多值Kleenean函数与三元输入多值输出函数之间的一些关系

Y. Hata, K. Nakashima, K. Yamato
{"title":"多值Kleenean函数与三元输入多值输出函数之间的一些关系","authors":"Y. Hata, K. Nakashima, K. Yamato","doi":"10.1109/ISMVL.1990.122656","DOIUrl":null,"url":null,"abstract":"The multiple-valued Kleenean functions discussed are multiple-valued-logic functions represented by multiple-valued AND, OR, NOT, constants, and variables. First, when p=odd, ternary input p-valued output functions (or (3, p)-functions for short) are defined, and when p=even, ternary input (p+1)-valued output functions ((3, p+1)-functions for short) are defined by adding the value (p-1)/2. A derivation rule is proposed as a link between (3, p)-functions (or (3, p+1)-functions and p-valued (or (p+1)-valued) Kleenean functions. For p=odd, the mapping from monotonic (3,p)-functions to p-valued Kleenean functions is a bijection. For p=even, since the mapping from monotonic (3, p+1)-functions to p-valued Kleenean functions is not a bijection, a condition which makes the mapping a bijection is developed. Moreover, Kleenean functions with no constants are derived from B-ternary logic functions by the rule; then the mapping is a bijection.<<ETX>>","PeriodicalId":433001,"journal":{"name":"Proceedings of the Twentieth International Symposium on Multiple-Valued Logic","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Some relationships between multiple-valued Kleenean functions and ternary input multiple-valued output functions\",\"authors\":\"Y. Hata, K. Nakashima, K. Yamato\",\"doi\":\"10.1109/ISMVL.1990.122656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multiple-valued Kleenean functions discussed are multiple-valued-logic functions represented by multiple-valued AND, OR, NOT, constants, and variables. First, when p=odd, ternary input p-valued output functions (or (3, p)-functions for short) are defined, and when p=even, ternary input (p+1)-valued output functions ((3, p+1)-functions for short) are defined by adding the value (p-1)/2. A derivation rule is proposed as a link between (3, p)-functions (or (3, p+1)-functions and p-valued (or (p+1)-valued) Kleenean functions. For p=odd, the mapping from monotonic (3,p)-functions to p-valued Kleenean functions is a bijection. For p=even, since the mapping from monotonic (3, p+1)-functions to p-valued Kleenean functions is not a bijection, a condition which makes the mapping a bijection is developed. Moreover, Kleenean functions with no constants are derived from B-ternary logic functions by the rule; then the mapping is a bijection.<<ETX>>\",\"PeriodicalId\":433001,\"journal\":{\"name\":\"Proceedings of the Twentieth International Symposium on Multiple-Valued Logic\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twentieth International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1990.122656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twentieth International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1990.122656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

所讨论的多值Kleenean函数是由多值AND、OR、NOT、常量和变量表示的多值逻辑函数。首先,当p=奇数时,定义三元输入p值输出函数(或简称(3,p)-函数),当p=偶数时,定义三元输入(p+1)值输出函数(简称(3,p+1)-函数),通过添加值(p-1)/2来定义。提出了(3,p)函数(或(3,p+1)函数与p值(或(p+1)值)Kleenean函数之间的推导规则。对于p=奇数,单调(3,p)函数到p值Kleenean函数的映射是双射。对于p=偶,由于单调(3,p+1)-函数到p值Kleenean函数的映射不是双射,因此给出了使该映射为双射的一个条件。此外,由b -三元逻辑函数导出无常数的Kleenean函数;那么这个映射就是双射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some relationships between multiple-valued Kleenean functions and ternary input multiple-valued output functions
The multiple-valued Kleenean functions discussed are multiple-valued-logic functions represented by multiple-valued AND, OR, NOT, constants, and variables. First, when p=odd, ternary input p-valued output functions (or (3, p)-functions for short) are defined, and when p=even, ternary input (p+1)-valued output functions ((3, p+1)-functions for short) are defined by adding the value (p-1)/2. A derivation rule is proposed as a link between (3, p)-functions (or (3, p+1)-functions and p-valued (or (p+1)-valued) Kleenean functions. For p=odd, the mapping from monotonic (3,p)-functions to p-valued Kleenean functions is a bijection. For p=even, since the mapping from monotonic (3, p+1)-functions to p-valued Kleenean functions is not a bijection, a condition which makes the mapping a bijection is developed. Moreover, Kleenean functions with no constants are derived from B-ternary logic functions by the rule; then the mapping is a bijection.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信