浮点展开的乘法

M. Daumas
{"title":"浮点展开的乘法","authors":"M. Daumas","doi":"10.1109/ARITH.1999.762851","DOIUrl":null,"url":null,"abstract":"In modern computers, the floating point unit is the part of the processor delivering the highest computing power and getting most attention from the design team. Performance of any multiple precision application will be dramatically enhanced by adequate use of floating point expansions. We present three multiplication algorithms, faster and more integrated than the stepwise algorithm proposed earlier. We have tested these novel algorithms on an application that computes the determinant of a matrix. In the absence of overflow or underflow, the process is error free and possibly more efficient than its integer based counterpart.","PeriodicalId":434169,"journal":{"name":"Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Multiplications of floating point expansions\",\"authors\":\"M. Daumas\",\"doi\":\"10.1109/ARITH.1999.762851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern computers, the floating point unit is the part of the processor delivering the highest computing power and getting most attention from the design team. Performance of any multiple precision application will be dramatically enhanced by adequate use of floating point expansions. We present three multiplication algorithms, faster and more integrated than the stepwise algorithm proposed earlier. We have tested these novel algorithms on an application that computes the determinant of a matrix. In the absence of overflow or underflow, the process is error free and possibly more efficient than its integer based counterpart.\",\"PeriodicalId\":434169,\"journal\":{\"name\":\"Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1999.762851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1999.762851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在现代计算机中,浮点单元是处理器中提供最高计算能力的部分,也是设计团队最关注的部分。通过充分使用浮点展开,任何多精度应用程序的性能都将得到显著提高。我们提出了三种乘法算法,比之前提出的逐步算法更快、更完整。我们已经在一个计算矩阵行列式的应用程序上测试了这些新算法。在没有溢出或下溢的情况下,该过程是无错误的,并且可能比基于整数的对应过程更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplications of floating point expansions
In modern computers, the floating point unit is the part of the processor delivering the highest computing power and getting most attention from the design team. Performance of any multiple precision application will be dramatically enhanced by adequate use of floating point expansions. We present three multiplication algorithms, faster and more integrated than the stepwise algorithm proposed earlier. We have tested these novel algorithms on an application that computes the determinant of a matrix. In the absence of overflow or underflow, the process is error free and possibly more efficient than its integer based counterpart.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信