Banach正规超代数上的中心与拟中心

As’ad Y. As’ad, ayman mizyed
{"title":"Banach正规超代数上的中心与拟中心","authors":"As’ad Y. As’ad, ayman mizyed","doi":"10.35552/anujr.a.36.1.2004","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that every strongly distributive hyperalgebra is normal. Also, we prove\nthat if X is a normed normal hyperalgebra with a propertyza◦x.zb◦y = zab◦xy and |λ| > ‖x‖, then\n(zλ◦e − x) is invertible. Moreover, we give a characterization of the center of a unital complex\nBanach normal hyperalgebra with the same property. Finally, we define the quasi-center, σ-quasi\ncenter and ρ-quasi center of Banach normal hyperalgebra as a generalization of the center and\nstudy some basic properties and relations between them.","PeriodicalId":274683,"journal":{"name":"An-Najah University Journal for Research - A (Natural Sciences)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Center and Quasi Center on Banach Normal Hyperalgebra\",\"authors\":\"As’ad Y. As’ad, ayman mizyed\",\"doi\":\"10.35552/anujr.a.36.1.2004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove that every strongly distributive hyperalgebra is normal. Also, we prove\\nthat if X is a normed normal hyperalgebra with a propertyza◦x.zb◦y = zab◦xy and |λ| > ‖x‖, then\\n(zλ◦e − x) is invertible. Moreover, we give a characterization of the center of a unital complex\\nBanach normal hyperalgebra with the same property. Finally, we define the quasi-center, σ-quasi\\ncenter and ρ-quasi center of Banach normal hyperalgebra as a generalization of the center and\\nstudy some basic properties and relations between them.\",\"PeriodicalId\":274683,\"journal\":{\"name\":\"An-Najah University Journal for Research - A (Natural Sciences)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"An-Najah University Journal for Research - A (Natural Sciences)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35552/anujr.a.36.1.2004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"An-Najah University Journal for Research - A (Natural Sciences)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35552/anujr.a.36.1.2004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了每一个强分配超代数都是正态的。同时,我们证明了如果X是一个具有性质的赋范正规超代数。Zb◦y = zab◦xy且|λ| >‖x‖,则(zλ◦e−x)可逆。此外,我们给出了具有相同性质的一元复banach正规超代数的中心的一个刻画。最后,我们定义了Banach正规超代数的拟中心、σ-拟中心和ρ-拟中心作为中心的推广,并研究了它们之间的一些基本性质和关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Center and Quasi Center on Banach Normal Hyperalgebra
In this paper, we prove that every strongly distributive hyperalgebra is normal. Also, we prove that if X is a normed normal hyperalgebra with a propertyza◦x.zb◦y = zab◦xy and |λ| > ‖x‖, then (zλ◦e − x) is invertible. Moreover, we give a characterization of the center of a unital complex Banach normal hyperalgebra with the same property. Finally, we define the quasi-center, σ-quasi center and ρ-quasi center of Banach normal hyperalgebra as a generalization of the center and study some basic properties and relations between them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信