无线传感器网络中的自主和分布式节点恢复

M. Strasser, Harald Vogt
{"title":"无线传感器网络中的自主和分布式节点恢复","authors":"M. Strasser, Harald Vogt","doi":"10.1145/1180345.1180360","DOIUrl":null,"url":null,"abstract":"Intrusion or misbehaviour detection systems are an important and widely accepted security tool in computer and wireless sensor networks. Their aim is to detect misbehaving or faulty nodes in order to take appropriate countermeasures, thus limiting the damage caused by adversaries as well as by hard or software faults. So far, however, once detected, misbehaving nodes have just been isolated from the rest of the sensor network and hence are no longer usable by running applications. In the presence of an adversary or software faults, this proceeding will inevitably lead to an early and complete loss of the whole network.For this reason, we propose to no longer expel misbehaving nodes, but to recover them into normal operation. In this paper, we address this problem and present a formal specification of what is considered a secure and correct node recovery algorithm together with a distributed algorithm that meets these properties. We discuss its requirements on the soft- and hardware of a node and show how they can be fulfilled with current and upcoming technologies. The algorithm is evaluated analytically as well as by means of extensive simulations, and the findings are compared to the outcome of a real implementation for the BTnode sensor platform. The results show that recovering sensor nodes is an expensive, though feasible and worthwhile task. Moreover, the proposed program code update algorithm is not only secure but also fair and robust.","PeriodicalId":380051,"journal":{"name":"ACM Workshop on Security of ad hoc and Sensor Networks","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Autonomous and distributed node recovery in wireless sensor networks\",\"authors\":\"M. Strasser, Harald Vogt\",\"doi\":\"10.1145/1180345.1180360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intrusion or misbehaviour detection systems are an important and widely accepted security tool in computer and wireless sensor networks. Their aim is to detect misbehaving or faulty nodes in order to take appropriate countermeasures, thus limiting the damage caused by adversaries as well as by hard or software faults. So far, however, once detected, misbehaving nodes have just been isolated from the rest of the sensor network and hence are no longer usable by running applications. In the presence of an adversary or software faults, this proceeding will inevitably lead to an early and complete loss of the whole network.For this reason, we propose to no longer expel misbehaving nodes, but to recover them into normal operation. In this paper, we address this problem and present a formal specification of what is considered a secure and correct node recovery algorithm together with a distributed algorithm that meets these properties. We discuss its requirements on the soft- and hardware of a node and show how they can be fulfilled with current and upcoming technologies. The algorithm is evaluated analytically as well as by means of extensive simulations, and the findings are compared to the outcome of a real implementation for the BTnode sensor platform. The results show that recovering sensor nodes is an expensive, though feasible and worthwhile task. Moreover, the proposed program code update algorithm is not only secure but also fair and robust.\",\"PeriodicalId\":380051,\"journal\":{\"name\":\"ACM Workshop on Security of ad hoc and Sensor Networks\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Workshop on Security of ad hoc and Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1180345.1180360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Workshop on Security of ad hoc and Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1180345.1180360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

入侵或不当行为检测系统是计算机和无线传感器网络中重要且被广泛接受的安全工具。其目的是检测行为不端的节点或故障节点,以便采取适当的对策,从而限制对手以及硬件或软件故障造成的损害。然而,到目前为止,一旦检测到,行为不端的节点就会与传感器网络的其余部分隔离开来,因此无法再通过运行的应用程序使用。在存在对手或软件故障的情况下,这一过程将不可避免地导致整个网络的早期和完全损失。因此,我们建议不再驱逐行为不良的节点,而是恢复其正常运行。在本文中,我们解决了这个问题,并提出了一个被认为是安全和正确的节点恢复算法的正式规范,以及满足这些属性的分布式算法。我们讨论了它对节点的软、硬件的要求,并展示了如何用当前和未来的技术来满足这些要求。该算法通过分析和广泛的模拟进行了评估,并将结果与BTnode传感器平台的实际实现结果进行了比较。结果表明,恢复传感器节点是一项昂贵但可行且值得的任务。该算法不仅安全,而且具有公平性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous and distributed node recovery in wireless sensor networks
Intrusion or misbehaviour detection systems are an important and widely accepted security tool in computer and wireless sensor networks. Their aim is to detect misbehaving or faulty nodes in order to take appropriate countermeasures, thus limiting the damage caused by adversaries as well as by hard or software faults. So far, however, once detected, misbehaving nodes have just been isolated from the rest of the sensor network and hence are no longer usable by running applications. In the presence of an adversary or software faults, this proceeding will inevitably lead to an early and complete loss of the whole network.For this reason, we propose to no longer expel misbehaving nodes, but to recover them into normal operation. In this paper, we address this problem and present a formal specification of what is considered a secure and correct node recovery algorithm together with a distributed algorithm that meets these properties. We discuss its requirements on the soft- and hardware of a node and show how they can be fulfilled with current and upcoming technologies. The algorithm is evaluated analytically as well as by means of extensive simulations, and the findings are compared to the outcome of a real implementation for the BTnode sensor platform. The results show that recovering sensor nodes is an expensive, though feasible and worthwhile task. Moreover, the proposed program code update algorithm is not only secure but also fair and robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信