sub - 20nm设计技术协同优化标准电池逻辑

Kaushik Vaidyanathan, L. Liebmann, A. Strojwas, L. Pileggi
{"title":"sub - 20nm设计技术协同优化标准电池逻辑","authors":"Kaushik Vaidyanathan, L. Liebmann, A. Strojwas, L. Pileggi","doi":"10.1109/ICCAD.2014.7001342","DOIUrl":null,"url":null,"abstract":"Efficiency and manufacturability of standard cell logic is critical for an IC, as standard cells are at the heart of the nexus between technology definition, circuit design and physical synthesis. Conventional standard cell design techniques are increasingly ineffective as we scale to patterning restricted sub-20 nm CMOS nodes. To meet the constraints and leverage the features of future technology offerings, we propose a holistic design technology co-optimization (DTCO) for standard cell logic. In our holistic DTCO we co-optimize the standard cell architecture to balance manufacturability and efficiency at the cell level while taking into account block level considerations such as pin accessibility and power rail robustness. Our DTCO in a foundry 14 nm CMOS resulted in two standard cell architectures, namely, 10T_BiDir and 10T_UniDir. We evaluated these cell libraries with physically synthesized blocks and ring oscillator test structures in IBM 14SOI process. We observed that 10T_BiDir emerges as the preferred alternative at 14 nm CMOS, with 10T_UniDir promising better scalability to future nodes.","PeriodicalId":426584,"journal":{"name":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Sub-20 nm design technology co-optimization for standard cell logic\",\"authors\":\"Kaushik Vaidyanathan, L. Liebmann, A. Strojwas, L. Pileggi\",\"doi\":\"10.1109/ICCAD.2014.7001342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficiency and manufacturability of standard cell logic is critical for an IC, as standard cells are at the heart of the nexus between technology definition, circuit design and physical synthesis. Conventional standard cell design techniques are increasingly ineffective as we scale to patterning restricted sub-20 nm CMOS nodes. To meet the constraints and leverage the features of future technology offerings, we propose a holistic design technology co-optimization (DTCO) for standard cell logic. In our holistic DTCO we co-optimize the standard cell architecture to balance manufacturability and efficiency at the cell level while taking into account block level considerations such as pin accessibility and power rail robustness. Our DTCO in a foundry 14 nm CMOS resulted in two standard cell architectures, namely, 10T_BiDir and 10T_UniDir. We evaluated these cell libraries with physically synthesized blocks and ring oscillator test structures in IBM 14SOI process. We observed that 10T_BiDir emerges as the preferred alternative at 14 nm CMOS, with 10T_UniDir promising better scalability to future nodes.\",\"PeriodicalId\":426584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2014.7001342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2014.7001342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

标准单元逻辑的效率和可制造性对集成电路至关重要,因为标准单元是技术定义、电路设计和物理合成之间联系的核心。传统的标准电池设计技术越来越无效,因为我们扩展到图案限制在20纳米以下的CMOS节点。为了满足限制和利用未来技术产品的特点,我们提出了标准单元逻辑的整体设计技术协同优化(DTCO)。在我们的整体DTCO中,我们共同优化标准单元架构,以平衡单元级的可制造性和效率,同时考虑到模块级的考虑,如引脚可及性和电源轨稳健性。我们在14纳米CMOS上的DTCO产生了两种标准单元架构,即10T_BiDir和10T_UniDir。我们在IBM 14SOI过程中使用物理合成块和环形振荡器测试结构评估了这些细胞库。我们观察到10T_BiDir成为14nm CMOS的首选替代方案,10T_UniDir有望更好地扩展到未来的节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sub-20 nm design technology co-optimization for standard cell logic
Efficiency and manufacturability of standard cell logic is critical for an IC, as standard cells are at the heart of the nexus between technology definition, circuit design and physical synthesis. Conventional standard cell design techniques are increasingly ineffective as we scale to patterning restricted sub-20 nm CMOS nodes. To meet the constraints and leverage the features of future technology offerings, we propose a holistic design technology co-optimization (DTCO) for standard cell logic. In our holistic DTCO we co-optimize the standard cell architecture to balance manufacturability and efficiency at the cell level while taking into account block level considerations such as pin accessibility and power rail robustness. Our DTCO in a foundry 14 nm CMOS resulted in two standard cell architectures, namely, 10T_BiDir and 10T_UniDir. We evaluated these cell libraries with physically synthesized blocks and ring oscillator test structures in IBM 14SOI process. We observed that 10T_BiDir emerges as the preferred alternative at 14 nm CMOS, with 10T_UniDir promising better scalability to future nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信