未来电力系统实时分布式频率控制的控制器HIL测试

E. Guillo-Sansano, M. Syed, A. Roscoe, G. Burt, M. Stanovich, K. Schoder
{"title":"未来电力系统实时分布式频率控制的控制器HIL测试","authors":"E. Guillo-Sansano, M. Syed, A. Roscoe, G. Burt, M. Stanovich, K. Schoder","doi":"10.1109/ISGTEurope.2016.7856309","DOIUrl":null,"url":null,"abstract":"With the evolution of power system components and structures driven mainly by renewable energy technologies, reliability of the network could be compromised with traditional control methodologies. Therefore, it is crucial to thoroughly validate and test future power system control concepts before deployment. In this paper, a Controller Hardware in the Loop (CHIL) simulation for a real-time distributed control algorithm concept developed within the ELECTRA IRP project is performed. CHIL allows exploration of many real-world issues such as noise, randomness of event timings, and hardware design issues that are often not present on a simulation-only system. Octave has been used as the programming language of the controller in order to facilitate the transition between software simulation and real-time control testing. The distributed controller achieved frequency restoration with a collaborative response between different controllers very fast after the unbalanced area is located.","PeriodicalId":330869,"journal":{"name":"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Controller HIL testing of real-time distributed frequency control for future power systems\",\"authors\":\"E. Guillo-Sansano, M. Syed, A. Roscoe, G. Burt, M. Stanovich, K. Schoder\",\"doi\":\"10.1109/ISGTEurope.2016.7856309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the evolution of power system components and structures driven mainly by renewable energy technologies, reliability of the network could be compromised with traditional control methodologies. Therefore, it is crucial to thoroughly validate and test future power system control concepts before deployment. In this paper, a Controller Hardware in the Loop (CHIL) simulation for a real-time distributed control algorithm concept developed within the ELECTRA IRP project is performed. CHIL allows exploration of many real-world issues such as noise, randomness of event timings, and hardware design issues that are often not present on a simulation-only system. Octave has been used as the programming language of the controller in order to facilitate the transition between software simulation and real-time control testing. The distributed controller achieved frequency restoration with a collaborative response between different controllers very fast after the unbalanced area is located.\",\"PeriodicalId\":330869,\"journal\":{\"name\":\"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2016.7856309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2016.7856309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

随着以可再生能源技术为主导的电力系统组件和结构的发展,传统的控制方法可能会降低电网的可靠性。因此,在部署之前彻底验证和测试未来电力系统控制概念至关重要。在本文中,对在ELECTRA IRP项目中开发的实时分布式控制算法概念进行了控制器硬件在环(CHIL)仿真。CHIL允许探索许多现实世界的问题,如噪声、事件时序的随机性和硬件设计问题,这些问题通常不会出现在模拟系统中。为了便于软件仿真和实时控制测试之间的过渡,控制器的编程语言使用了八度程。分布式控制器在定位不平衡区域后,通过控制器间的协同响应,快速实现了频率恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controller HIL testing of real-time distributed frequency control for future power systems
With the evolution of power system components and structures driven mainly by renewable energy technologies, reliability of the network could be compromised with traditional control methodologies. Therefore, it is crucial to thoroughly validate and test future power system control concepts before deployment. In this paper, a Controller Hardware in the Loop (CHIL) simulation for a real-time distributed control algorithm concept developed within the ELECTRA IRP project is performed. CHIL allows exploration of many real-world issues such as noise, randomness of event timings, and hardware design issues that are often not present on a simulation-only system. Octave has been used as the programming language of the controller in order to facilitate the transition between software simulation and real-time control testing. The distributed controller achieved frequency restoration with a collaborative response between different controllers very fast after the unbalanced area is located.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信