3d打印环境友好,成本效益高的无线平台

Xiaochen Chen, Han He, L. Ukkonen, J. Virkki
{"title":"3d打印环境友好,成本效益高的无线平台","authors":"Xiaochen Chen, Han He, L. Ukkonen, J. Virkki","doi":"10.1109/ESTC.2018.8546358","DOIUrl":null,"url":null,"abstract":"We present passive UHF RFID platforms composed of 3D-printed biodegradable plastic structures and conductive thread. Due to its flexibility, this extremely cost-effective and environmentally friendly wireless platform can be easily embedded into versatile structures. We evaluated the wireless performance of the tag fabricated from conductive thread both on a 3D-printed substrate as well as inside two 3D-printed layers. The read range of the tag on a 3D-printed substrate was around 6 meters between 860-960 MHz. Then, another layer was applied on top of the tag. Thus, the tag was left inside a 3D-printed platform, where it as protected from environmental stresses, such as moisture. The read range of this structure was still 6 meters throughout the global UHF RFID frequency band. Based on these initial results, these platforms show potential for unobtrusive identification and sensing solutions.","PeriodicalId":198238,"journal":{"name":"2018 7th Electronic System-Integration Technology Conference (ESTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"3D-Printed Eco-Friendly and Cost-Effective Wireless Platforms\",\"authors\":\"Xiaochen Chen, Han He, L. Ukkonen, J. Virkki\",\"doi\":\"10.1109/ESTC.2018.8546358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present passive UHF RFID platforms composed of 3D-printed biodegradable plastic structures and conductive thread. Due to its flexibility, this extremely cost-effective and environmentally friendly wireless platform can be easily embedded into versatile structures. We evaluated the wireless performance of the tag fabricated from conductive thread both on a 3D-printed substrate as well as inside two 3D-printed layers. The read range of the tag on a 3D-printed substrate was around 6 meters between 860-960 MHz. Then, another layer was applied on top of the tag. Thus, the tag was left inside a 3D-printed platform, where it as protected from environmental stresses, such as moisture. The read range of this structure was still 6 meters throughout the global UHF RFID frequency band. Based on these initial results, these platforms show potential for unobtrusive identification and sensing solutions.\",\"PeriodicalId\":198238,\"journal\":{\"name\":\"2018 7th Electronic System-Integration Technology Conference (ESTC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Electronic System-Integration Technology Conference (ESTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTC.2018.8546358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Electronic System-Integration Technology Conference (ESTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTC.2018.8546358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了由3d打印可生物降解塑料结构和导电线组成的无源超高频RFID平台。由于其灵活性,这种极具成本效益和环保的无线平台可以很容易地嵌入到多功能结构中。我们评估了在3d打印基板上以及在两个3d打印层内由导电线制成的标签的无线性能。标签在3d打印基板上的读取范围在860-960 MHz之间约为6米。然后,另一层应用在标签的顶部。因此,标签被放置在一个3d打印平台中,在那里它可以免受环境压力,比如潮湿。该结构在全球UHF RFID频带内的读取范围仍为6米。基于这些初步结果,这些平台显示出不引人注目的识别和传感解决方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D-Printed Eco-Friendly and Cost-Effective Wireless Platforms
We present passive UHF RFID platforms composed of 3D-printed biodegradable plastic structures and conductive thread. Due to its flexibility, this extremely cost-effective and environmentally friendly wireless platform can be easily embedded into versatile structures. We evaluated the wireless performance of the tag fabricated from conductive thread both on a 3D-printed substrate as well as inside two 3D-printed layers. The read range of the tag on a 3D-printed substrate was around 6 meters between 860-960 MHz. Then, another layer was applied on top of the tag. Thus, the tag was left inside a 3D-printed platform, where it as protected from environmental stresses, such as moisture. The read range of this structure was still 6 meters throughout the global UHF RFID frequency band. Based on these initial results, these platforms show potential for unobtrusive identification and sensing solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信