{"title":"大肠杆菌分批喂料培养的非线性模型预测控制研究","authors":"G. Hafidi, S. Tebbani, D. Dumur, A. Wouwer","doi":"10.1109/CCA.2007.4389229","DOIUrl":null,"url":null,"abstract":"This paper proposes the design of a nonlinear model predictive control (NMPC) scheme for the regulation of the acetic acid concentration (leading to the biomass growth maximization) during high cell density fed-batch cultures of Escherichia coli. For NMPC purposes, an unstructured model for the growth is first derived with respect to the major metabolic pathways: oxidative growth on glucose, fermentative growth on glucose and oxidative growth on acetic acid. To avoid complexity in the application of the traditional version of NMPC to this process, the on-line optimization then proceeds using the control vector parameterization (CVP) approach. Finally, some simulation results are given to illustrate the efficiency of the proposed control strategy.","PeriodicalId":176828,"journal":{"name":"2007 IEEE International Conference on Control Applications","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards nonlinear model predictive control of fed-batch cultures of E. Coli\",\"authors\":\"G. Hafidi, S. Tebbani, D. Dumur, A. Wouwer\",\"doi\":\"10.1109/CCA.2007.4389229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the design of a nonlinear model predictive control (NMPC) scheme for the regulation of the acetic acid concentration (leading to the biomass growth maximization) during high cell density fed-batch cultures of Escherichia coli. For NMPC purposes, an unstructured model for the growth is first derived with respect to the major metabolic pathways: oxidative growth on glucose, fermentative growth on glucose and oxidative growth on acetic acid. To avoid complexity in the application of the traditional version of NMPC to this process, the on-line optimization then proceeds using the control vector parameterization (CVP) approach. Finally, some simulation results are given to illustrate the efficiency of the proposed control strategy.\",\"PeriodicalId\":176828,\"journal\":{\"name\":\"2007 IEEE International Conference on Control Applications\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Control Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2007.4389229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Control Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2007.4389229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards nonlinear model predictive control of fed-batch cultures of E. Coli
This paper proposes the design of a nonlinear model predictive control (NMPC) scheme for the regulation of the acetic acid concentration (leading to the biomass growth maximization) during high cell density fed-batch cultures of Escherichia coli. For NMPC purposes, an unstructured model for the growth is first derived with respect to the major metabolic pathways: oxidative growth on glucose, fermentative growth on glucose and oxidative growth on acetic acid. To avoid complexity in the application of the traditional version of NMPC to this process, the on-line optimization then proceeds using the control vector parameterization (CVP) approach. Finally, some simulation results are given to illustrate the efficiency of the proposed control strategy.