K. Kawabata, R. Asami, T. Azuma, H. Yoshikawa, S. Umemura
{"title":"纳米相变液滴与超声诱导空化的抗肿瘤作用","authors":"K. Kawabata, R. Asami, T. Azuma, H. Yoshikawa, S. Umemura","doi":"10.1109/ULTSYM.2009.5441532","DOIUrl":null,"url":null,"abstract":"We performed a study to look into the therapeutic application of a novel diagnostic and therapeutic agent, phase change nano droplet (PCND), in combination with 1-MHz ultrasound. It was found using gel phantoms that PCND works as a cavitation accelerator for a 1-MHz ultrasound only when an ultrasound which changes the phase of PCND from liquid to gas (phase change ultrasound) is exposed in advance. A nano droplet that cannot change its phase to a gas does not work even in the presence of the phase change ultrasound. The cavitation induction with the aid of a PCND was observable by B-mode echography as a brightness change. Such a brightness change was also observed in in vivo experiments on tumor baring mice in the presence of a PCND and a phase change ultrasound. Moreover, tissue damage was observed at the site of the brightness change. The lack of either a PCND or a phase change ultrasound did not induce any brightness change, suggesting the same mechanism as a gel phantom works in living tissues. Our results are promising for use in a noble ultrasound therapy system with high selectivity and safety while improving the throughput of current ultrasound tumor treatment systems.","PeriodicalId":368182,"journal":{"name":"2009 IEEE International Ultrasonics Symposium","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Anti-tumor effects of cavitation induced with phase-change nano droplet and ultrasound\",\"authors\":\"K. Kawabata, R. Asami, T. Azuma, H. Yoshikawa, S. Umemura\",\"doi\":\"10.1109/ULTSYM.2009.5441532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We performed a study to look into the therapeutic application of a novel diagnostic and therapeutic agent, phase change nano droplet (PCND), in combination with 1-MHz ultrasound. It was found using gel phantoms that PCND works as a cavitation accelerator for a 1-MHz ultrasound only when an ultrasound which changes the phase of PCND from liquid to gas (phase change ultrasound) is exposed in advance. A nano droplet that cannot change its phase to a gas does not work even in the presence of the phase change ultrasound. The cavitation induction with the aid of a PCND was observable by B-mode echography as a brightness change. Such a brightness change was also observed in in vivo experiments on tumor baring mice in the presence of a PCND and a phase change ultrasound. Moreover, tissue damage was observed at the site of the brightness change. The lack of either a PCND or a phase change ultrasound did not induce any brightness change, suggesting the same mechanism as a gel phantom works in living tissues. Our results are promising for use in a noble ultrasound therapy system with high selectivity and safety while improving the throughput of current ultrasound tumor treatment systems.\",\"PeriodicalId\":368182,\"journal\":{\"name\":\"2009 IEEE International Ultrasonics Symposium\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Ultrasonics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2009.5441532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2009.5441532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anti-tumor effects of cavitation induced with phase-change nano droplet and ultrasound
We performed a study to look into the therapeutic application of a novel diagnostic and therapeutic agent, phase change nano droplet (PCND), in combination with 1-MHz ultrasound. It was found using gel phantoms that PCND works as a cavitation accelerator for a 1-MHz ultrasound only when an ultrasound which changes the phase of PCND from liquid to gas (phase change ultrasound) is exposed in advance. A nano droplet that cannot change its phase to a gas does not work even in the presence of the phase change ultrasound. The cavitation induction with the aid of a PCND was observable by B-mode echography as a brightness change. Such a brightness change was also observed in in vivo experiments on tumor baring mice in the presence of a PCND and a phase change ultrasound. Moreover, tissue damage was observed at the site of the brightness change. The lack of either a PCND or a phase change ultrasound did not induce any brightness change, suggesting the same mechanism as a gel phantom works in living tissues. Our results are promising for use in a noble ultrasound therapy system with high selectivity and safety while improving the throughput of current ultrasound tumor treatment systems.