D. Trakas, N. Hatziargyriou, M. Panteli, P. Mancarella
{"title":"极端天气下输电系统高影响低概率事件的严重风险指数","authors":"D. Trakas, N. Hatziargyriou, M. Panteli, P. Mancarella","doi":"10.1109/ISGTEurope.2016.7856188","DOIUrl":null,"url":null,"abstract":"It is evident worldwide that high-impact, low-probability (HILP) events, such as associated to extreme weather, can have disastrous consequences on power systems resilience. In this paper, we propose a Severity Risk Index (SRI) that with the support of smart grid technologies (e.g., real-time monitoring) is capable of providing an indication of the evolving risk of power systems subject to HILP events in a smart and adaptive way, thus potentially contributing to effective decision-making to mitigate such risk. Specific applications considered here refer to windstorm events, for which purpose the proposed SRI is embedded in a Sequential Monte Carlo simulation for capturing the spatiotemporal effects of windstorms passing across transmission networks. Latin Hypercube Sampling and backward scenario reduction method are used to produce a computationally tractable number of representative scenarios for SRI computation. The IEEE 24-bus reliability test system is used to demonstrate the effectiveness of the proposed SRI.","PeriodicalId":330869,"journal":{"name":"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A severity risk index for high impact low probability events in transmission systems due to extreme weather\",\"authors\":\"D. Trakas, N. Hatziargyriou, M. Panteli, P. Mancarella\",\"doi\":\"10.1109/ISGTEurope.2016.7856188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is evident worldwide that high-impact, low-probability (HILP) events, such as associated to extreme weather, can have disastrous consequences on power systems resilience. In this paper, we propose a Severity Risk Index (SRI) that with the support of smart grid technologies (e.g., real-time monitoring) is capable of providing an indication of the evolving risk of power systems subject to HILP events in a smart and adaptive way, thus potentially contributing to effective decision-making to mitigate such risk. Specific applications considered here refer to windstorm events, for which purpose the proposed SRI is embedded in a Sequential Monte Carlo simulation for capturing the spatiotemporal effects of windstorms passing across transmission networks. Latin Hypercube Sampling and backward scenario reduction method are used to produce a computationally tractable number of representative scenarios for SRI computation. The IEEE 24-bus reliability test system is used to demonstrate the effectiveness of the proposed SRI.\",\"PeriodicalId\":330869,\"journal\":{\"name\":\"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2016.7856188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2016.7856188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A severity risk index for high impact low probability events in transmission systems due to extreme weather
It is evident worldwide that high-impact, low-probability (HILP) events, such as associated to extreme weather, can have disastrous consequences on power systems resilience. In this paper, we propose a Severity Risk Index (SRI) that with the support of smart grid technologies (e.g., real-time monitoring) is capable of providing an indication of the evolving risk of power systems subject to HILP events in a smart and adaptive way, thus potentially contributing to effective decision-making to mitigate such risk. Specific applications considered here refer to windstorm events, for which purpose the proposed SRI is embedded in a Sequential Monte Carlo simulation for capturing the spatiotemporal effects of windstorms passing across transmission networks. Latin Hypercube Sampling and backward scenario reduction method are used to produce a computationally tractable number of representative scenarios for SRI computation. The IEEE 24-bus reliability test system is used to demonstrate the effectiveness of the proposed SRI.