一种新的粗糙集近似算子快速提取算法在信息系统分类中的应用

Ping Song, Xu Zhang
{"title":"一种新的粗糙集近似算子快速提取算法在信息系统分类中的应用","authors":"Ping Song, Xu Zhang","doi":"10.1109/ICCIS.2010.168","DOIUrl":null,"url":null,"abstract":"The information system classification is a crucial part of data mining, which aims to analysis the information system, extract important message from complex data, and forecast the future development trend of data. At present, there are many methods to classify the data, for example, Rough Set Theory, Decision Tree, Bayesian Network, Genetic Algorithm, etc. The method presented in this paper, based on ID3 Algorithm, associated with the combination of Rough Set Theory and Decision Tree Theory, uses the conditional attribute as the decision tree's node to classify data in the information system. Moreover, a new fast algorithm for getting approximate operators is used in the information system classification to improve the efficiency.","PeriodicalId":227848,"journal":{"name":"2010 International Conference on Computational and Information Sciences","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of a New Fast Algorithm for Getting Approximate Operators of Rough Set to Information System Classification\",\"authors\":\"Ping Song, Xu Zhang\",\"doi\":\"10.1109/ICCIS.2010.168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The information system classification is a crucial part of data mining, which aims to analysis the information system, extract important message from complex data, and forecast the future development trend of data. At present, there are many methods to classify the data, for example, Rough Set Theory, Decision Tree, Bayesian Network, Genetic Algorithm, etc. The method presented in this paper, based on ID3 Algorithm, associated with the combination of Rough Set Theory and Decision Tree Theory, uses the conditional attribute as the decision tree's node to classify data in the information system. Moreover, a new fast algorithm for getting approximate operators is used in the information system classification to improve the efficiency.\",\"PeriodicalId\":227848,\"journal\":{\"name\":\"2010 International Conference on Computational and Information Sciences\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Computational and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2010.168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2010.168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

信息系统分类是数据挖掘的重要组成部分,其目的是分析信息系统,从复杂的数据中提取重要信息,预测数据的未来发展趋势。目前,对数据进行分类的方法有很多,如粗糙集理论、决策树、贝叶斯网络、遗传算法等。本文提出的方法以ID3算法为基础,结合粗糙集理论和决策树理论,以条件属性作为决策树的节点,对信息系统中的数据进行分类。此外,在信息系统分类中采用了一种新的快速逼近算子算法,提高了分类效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of a New Fast Algorithm for Getting Approximate Operators of Rough Set to Information System Classification
The information system classification is a crucial part of data mining, which aims to analysis the information system, extract important message from complex data, and forecast the future development trend of data. At present, there are many methods to classify the data, for example, Rough Set Theory, Decision Tree, Bayesian Network, Genetic Algorithm, etc. The method presented in this paper, based on ID3 Algorithm, associated with the combination of Rough Set Theory and Decision Tree Theory, uses the conditional attribute as the decision tree's node to classify data in the information system. Moreover, a new fast algorithm for getting approximate operators is used in the information system classification to improve the efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信