利用遗传算法进行调度

U. Fissgus
{"title":"利用遗传算法进行调度","authors":"U. Fissgus","doi":"10.1109/ICDCS.2000.840983","DOIUrl":null,"url":null,"abstract":"Considers the scheduling of mixed task- and data-parallel modules comprising computation and communication operations. The program generation starts with a specification of the maximum degree of task- and data-parallelism of the method to be implemented. In several derivation steps, the degree of parallelism is adapted to a specific distributed memory machine. We present a scheduling derivation step based on the genetic algorithm paradigm. The scheduling takes not only decisions on the execution order (independent modules can be executed consecutively by all processors available or concurrently by independent groups of processors) but also on appropriate data distributions and task implementation versions. We demonstrate the efficiency of the algorithm by an example from numerical analysis.","PeriodicalId":284992,"journal":{"name":"Proceedings 20th IEEE International Conference on Distributed Computing Systems","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Scheduling using genetic algorithms\",\"authors\":\"U. Fissgus\",\"doi\":\"10.1109/ICDCS.2000.840983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considers the scheduling of mixed task- and data-parallel modules comprising computation and communication operations. The program generation starts with a specification of the maximum degree of task- and data-parallelism of the method to be implemented. In several derivation steps, the degree of parallelism is adapted to a specific distributed memory machine. We present a scheduling derivation step based on the genetic algorithm paradigm. The scheduling takes not only decisions on the execution order (independent modules can be executed consecutively by all processors available or concurrently by independent groups of processors) but also on appropriate data distributions and task implementation versions. We demonstrate the efficiency of the algorithm by an example from numerical analysis.\",\"PeriodicalId\":284992,\"journal\":{\"name\":\"Proceedings 20th IEEE International Conference on Distributed Computing Systems\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 20th IEEE International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2000.840983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 20th IEEE International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2000.840983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

考虑由计算和通信操作组成的混合任务和数据并行模块的调度。程序生成从要实现的方法的最大任务和数据并行度的规范开始。在几个派生步骤中,并行度适应于特定的分布式内存机器。提出了一种基于遗传算法范式的调度推导步骤。调度不仅决定执行顺序(独立模块可以由所有可用的处理器连续执行,也可以由独立的处理器组并发执行),还决定适当的数据分布和任务实现版本。通过一个数值分析实例,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scheduling using genetic algorithms
Considers the scheduling of mixed task- and data-parallel modules comprising computation and communication operations. The program generation starts with a specification of the maximum degree of task- and data-parallelism of the method to be implemented. In several derivation steps, the degree of parallelism is adapted to a specific distributed memory machine. We present a scheduling derivation step based on the genetic algorithm paradigm. The scheduling takes not only decisions on the execution order (independent modules can be executed consecutively by all processors available or concurrently by independent groups of processors) but also on appropriate data distributions and task implementation versions. We demonstrate the efficiency of the algorithm by an example from numerical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信