基于web挖掘的学生模型自动发现方法

Mohamed Koutheair Khribi
{"title":"基于web挖掘的学生模型自动发现方法","authors":"Mohamed Koutheair Khribi","doi":"10.1109/ICTA.2013.6815287","DOIUrl":null,"url":null,"abstract":"Learner models represent a basic knowledge asset that can be used to ensure personalization within e-learning systems. These models can be built only based on learners activities, tracked and gathered on the web server side. In this paper, we propose to outline the general principles of an entirely automated web mining based approach for modeling learners in learning management systems. So, we consider a learner model with three components: the learner's profile, the learner's knowledge, and the learner's educational preferences. These learner's model components are inferred automatically from usage data, based on web mining techniques. Then, a hierarchical multi-level model based collaborative filtering approach is applied for modeling learners into groups.","PeriodicalId":188977,"journal":{"name":"Fourth International Conference on Information and Communication Technology and Accessibility (ICTA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A web mining based approach for automatic student model discovery\",\"authors\":\"Mohamed Koutheair Khribi\",\"doi\":\"10.1109/ICTA.2013.6815287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learner models represent a basic knowledge asset that can be used to ensure personalization within e-learning systems. These models can be built only based on learners activities, tracked and gathered on the web server side. In this paper, we propose to outline the general principles of an entirely automated web mining based approach for modeling learners in learning management systems. So, we consider a learner model with three components: the learner's profile, the learner's knowledge, and the learner's educational preferences. These learner's model components are inferred automatically from usage data, based on web mining techniques. Then, a hierarchical multi-level model based collaborative filtering approach is applied for modeling learners into groups.\",\"PeriodicalId\":188977,\"journal\":{\"name\":\"Fourth International Conference on Information and Communication Technology and Accessibility (ICTA)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Conference on Information and Communication Technology and Accessibility (ICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTA.2013.6815287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Information and Communication Technology and Accessibility (ICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTA.2013.6815287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

学习者模型代表了一种基本的知识资产,可用于确保电子学习系统中的个性化。这些模型只能基于学习者的活动来构建,并在web服务器端进行跟踪和收集。在本文中,我们建议概述一种完全自动化的基于web挖掘的学习管理系统中学习者建模方法的一般原则。因此,我们考虑一个由三个组成部分组成的学习者模型:学习者的概况、学习者的知识和学习者的教育偏好。这些学习者的模型组件是基于web挖掘技术从使用数据中自动推断出来的。然后,采用一种基于分层多层模型的协同过滤方法对学习者进行分组建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A web mining based approach for automatic student model discovery
Learner models represent a basic knowledge asset that can be used to ensure personalization within e-learning systems. These models can be built only based on learners activities, tracked and gathered on the web server side. In this paper, we propose to outline the general principles of an entirely automated web mining based approach for modeling learners in learning management systems. So, we consider a learner model with three components: the learner's profile, the learner's knowledge, and the learner's educational preferences. These learner's model components are inferred automatically from usage data, based on web mining techniques. Then, a hierarchical multi-level model based collaborative filtering approach is applied for modeling learners into groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信