{"title":"一个极小极大交集问题","authors":"P. R. Meyers","doi":"10.6028/JRES.080B.024","DOIUrl":null,"url":null,"abstract":"Some years ago, NBS colleague S. Haber communicated the following proble m: To select n subsets of the unit interval, each of mea sw'e 112, so a s to minimize the maximum of the measures of the pairwise inte rsections of these subse ts. The problem is suggested by a paper [1]1 of Gilli s which, settling \"an unpubli shed conjec ture of Erdos,\" proves that for denumerably infinite collections of sets of measure a, the value corresponding to the maximum pairwise-inte rsection meas ure has infimum a 2 • (Collections with higher transfinit e cardinality are treated by Gillis in [2].) Here we provide an explicit solution for collections of finite cardinalities n. Further, and also corresponding to [1], we consider as well the case of p-fold intersections with 2 Sop Son, and provide the corresponding explicit solution. (As noted in [2], the argument of [1] easily extend s to show that aT' is the limiting value for a denumerably infinite collection.) As preliminary, we introduce a second minimization and point out its relationship to our minimax problem, to wit: Select n subsets A 10 A2 , • . , A 1/ of the unit inte rval, eac h of measure a, so that the sum of the measures of their p-fold inte rsections is minimum. If now X = {Slo . . \" SI/}' a solution to this minimum proble m, can be chose n so that aU its p-fold intersections have the same measure s, and if M is the maximum of the measures of the p-fold intersections of an arbitrary collection A to A 2, . , \" A n with all fL(A J = a, then","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1976-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A minimax-measure intersection problem\",\"authors\":\"P. R. Meyers\",\"doi\":\"10.6028/JRES.080B.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some years ago, NBS colleague S. Haber communicated the following proble m: To select n subsets of the unit interval, each of mea sw'e 112, so a s to minimize the maximum of the measures of the pairwise inte rsections of these subse ts. The problem is suggested by a paper [1]1 of Gilli s which, settling \\\"an unpubli shed conjec ture of Erdos,\\\" proves that for denumerably infinite collections of sets of measure a, the value corresponding to the maximum pairwise-inte rsection meas ure has infimum a 2 • (Collections with higher transfinit e cardinality are treated by Gillis in [2].) Here we provide an explicit solution for collections of finite cardinalities n. Further, and also corresponding to [1], we consider as well the case of p-fold intersections with 2 Sop Son, and provide the corresponding explicit solution. (As noted in [2], the argument of [1] easily extend s to show that aT' is the limiting value for a denumerably infinite collection.) As preliminary, we introduce a second minimization and point out its relationship to our minimax problem, to wit: Select n subsets A 10 A2 , • . , A 1/ of the unit inte rval, eac h of measure a, so that the sum of the measures of their p-fold inte rsections is minimum. If now X = {Slo . . \\\" SI/}' a solution to this minimum proble m, can be chose n so that aU its p-fold intersections have the same measure s, and if M is the maximum of the measures of the p-fold intersections of an arbitrary collection A to A 2, . , \\\" A n with all fL(A J = a, then\",\"PeriodicalId\":166823,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1976-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.080B.024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.080B.024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Some years ago, NBS colleague S. Haber communicated the following proble m: To select n subsets of the unit interval, each of mea sw'e 112, so a s to minimize the maximum of the measures of the pairwise inte rsections of these subse ts. The problem is suggested by a paper [1]1 of Gilli s which, settling "an unpubli shed conjec ture of Erdos," proves that for denumerably infinite collections of sets of measure a, the value corresponding to the maximum pairwise-inte rsection meas ure has infimum a 2 • (Collections with higher transfinit e cardinality are treated by Gillis in [2].) Here we provide an explicit solution for collections of finite cardinalities n. Further, and also corresponding to [1], we consider as well the case of p-fold intersections with 2 Sop Son, and provide the corresponding explicit solution. (As noted in [2], the argument of [1] easily extend s to show that aT' is the limiting value for a denumerably infinite collection.) As preliminary, we introduce a second minimization and point out its relationship to our minimax problem, to wit: Select n subsets A 10 A2 , • . , A 1/ of the unit inte rval, eac h of measure a, so that the sum of the measures of their p-fold inte rsections is minimum. If now X = {Slo . . " SI/}' a solution to this minimum proble m, can be chose n so that aU its p-fold intersections have the same measure s, and if M is the maximum of the measures of the p-fold intersections of an arbitrary collection A to A 2, . , " A n with all fL(A J = a, then