远程依赖过程在远程通信应用中的预测

A. G. Qureshi
{"title":"远程依赖过程在远程通信应用中的预测","authors":"A. G. Qureshi","doi":"10.1109/ISSPA.1996.615707","DOIUrl":null,"url":null,"abstract":"Recent studies have shown that trafic in telecommunication networks exhibits long-range dependence (LRD). Accurate modelling and analysis of teletrafic incorporating LRD is therefore required in network engineering. Prediction of trafic levels can play an important role in teletrafic analysis for dynamic resource allocation and traffic management. This paper presents the formulation of a model based recursive , linear minimum mean-square error predic- tor for LRD processes. A Kalman predictor is pro- posed for LAD processes modelled by fractional autoregressive integrated moving average CfARIMA) models. The family of fARIMA models can account for long range, as well as short range and qwi-peri- odic dependencies typical of teletraffic data.","PeriodicalId":359344,"journal":{"name":"Fourth International Symposium on Signal Processing and Its Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Long-Range Dependent Processes for Teletraffic Applications\",\"authors\":\"A. G. Qureshi\",\"doi\":\"10.1109/ISSPA.1996.615707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies have shown that trafic in telecommunication networks exhibits long-range dependence (LRD). Accurate modelling and analysis of teletrafic incorporating LRD is therefore required in network engineering. Prediction of trafic levels can play an important role in teletrafic analysis for dynamic resource allocation and traffic management. This paper presents the formulation of a model based recursive , linear minimum mean-square error predic- tor for LRD processes. A Kalman predictor is pro- posed for LAD processes modelled by fractional autoregressive integrated moving average CfARIMA) models. The family of fARIMA models can account for long range, as well as short range and qwi-peri- odic dependencies typical of teletraffic data.\",\"PeriodicalId\":359344,\"journal\":{\"name\":\"Fourth International Symposium on Signal Processing and Its Applications\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Symposium on Signal Processing and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.1996.615707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Symposium on Signal Processing and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.1996.615707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,电信网络中的流量表现出远程依赖(LRD)。因此,在网络工程中需要对包含LRD的电信业务进行准确的建模和分析。交通水平预测在交通分析、动态资源分配和交通管理中发挥着重要作用。本文提出了一种基于模型的LRD过程的递归线性最小均方误差预测器。针对分数阶自回归积分移动平均(CfARIMA)模型建模的LAD过程,提出了一种卡尔曼预测器。fARIMA模型族可以解释远程、短距离和典型的无线通信数据周期依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Long-Range Dependent Processes for Teletraffic Applications
Recent studies have shown that trafic in telecommunication networks exhibits long-range dependence (LRD). Accurate modelling and analysis of teletrafic incorporating LRD is therefore required in network engineering. Prediction of trafic levels can play an important role in teletrafic analysis for dynamic resource allocation and traffic management. This paper presents the formulation of a model based recursive , linear minimum mean-square error predic- tor for LRD processes. A Kalman predictor is pro- posed for LAD processes modelled by fractional autoregressive integrated moving average CfARIMA) models. The family of fARIMA models can account for long range, as well as short range and qwi-peri- odic dependencies typical of teletraffic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信