{"title":"低温热电材料的电子性能:硒掺杂铋锑合金","authors":"M. Koyano, R. Hokaku","doi":"10.1109/ICT.2006.331340","DOIUrl":null,"url":null,"abstract":"We explore the electronic properties of selenium doped bismuth-antimony (Bi-Sb-Se) system and present a model of the conduction band edge structure of this system. Polycrystalline Bi1-xSb xSey samples were synthesized by fusion method. The electron concentration n estimated from RH increases with increasing Se concentration below y < 0.003, while the n is saturated in the range of Se concentration 0.003 les y les 0.1 This result indicates that the Fermi level is pinned by the Se level for the samples with y ges 0.003. We find that the values of Seebeck coefficient S for all samples change in the wide temperature range according to |S| = An -0.67T, the proportionality factors A being independent of Se concentration y . It confirms that the electronic properties of the Bi-Sb-Se system can be understood by three dimensional nearly free electrons in a parabolic conduction band. Based on these results, we will discuss a strategy to improve the thermoelectric performance of low-temperature thermoelectric materials","PeriodicalId":346555,"journal":{"name":"2006 25th International Conference on Thermoelectrics","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electronic Properties of Low-Temperature Thermoelectric Materials: Selenium Doped Bismuth-Antimony Alloys\",\"authors\":\"M. Koyano, R. Hokaku\",\"doi\":\"10.1109/ICT.2006.331340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the electronic properties of selenium doped bismuth-antimony (Bi-Sb-Se) system and present a model of the conduction band edge structure of this system. Polycrystalline Bi1-xSb xSey samples were synthesized by fusion method. The electron concentration n estimated from RH increases with increasing Se concentration below y < 0.003, while the n is saturated in the range of Se concentration 0.003 les y les 0.1 This result indicates that the Fermi level is pinned by the Se level for the samples with y ges 0.003. We find that the values of Seebeck coefficient S for all samples change in the wide temperature range according to |S| = An -0.67T, the proportionality factors A being independent of Se concentration y . It confirms that the electronic properties of the Bi-Sb-Se system can be understood by three dimensional nearly free electrons in a parabolic conduction band. Based on these results, we will discuss a strategy to improve the thermoelectric performance of low-temperature thermoelectric materials\",\"PeriodicalId\":346555,\"journal\":{\"name\":\"2006 25th International Conference on Thermoelectrics\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 25th International Conference on Thermoelectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2006.331340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 25th International Conference on Thermoelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2006.331340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electronic Properties of Low-Temperature Thermoelectric Materials: Selenium Doped Bismuth-Antimony Alloys
We explore the electronic properties of selenium doped bismuth-antimony (Bi-Sb-Se) system and present a model of the conduction band edge structure of this system. Polycrystalline Bi1-xSb xSey samples were synthesized by fusion method. The electron concentration n estimated from RH increases with increasing Se concentration below y < 0.003, while the n is saturated in the range of Se concentration 0.003 les y les 0.1 This result indicates that the Fermi level is pinned by the Se level for the samples with y ges 0.003. We find that the values of Seebeck coefficient S for all samples change in the wide temperature range according to |S| = An -0.67T, the proportionality factors A being independent of Se concentration y . It confirms that the electronic properties of the Bi-Sb-Se system can be understood by three dimensional nearly free electrons in a parabolic conduction band. Based on these results, we will discuss a strategy to improve the thermoelectric performance of low-temperature thermoelectric materials