开关分段线性系统的参数估计

J. Ragot, G. Mourot, D. Maquin
{"title":"开关分段线性系统的参数估计","authors":"J. Ragot, G. Mourot, D. Maquin","doi":"10.1109/CDC.2003.1271927","DOIUrl":null,"url":null,"abstract":"During the last years, a number of methodological papers on models with discrete parameter shifts have revived interest in the so-called regime switching models. Piecewise linear models are attractive when modelling a wide range of nonlinear system and determining simultaneously i) the data partition ii) the time instant of change iii) the parameter values of the different local models. This is a difficult problem for which no solution exists in the general case and we show here some aspects and particular results concerning the problem of off line learning of switching time series. We propose a method for identifying the parameters of the local models when choosing an adapted weighting function, this function allowing to select the data for which each local model is active. Indeed the proposed method is able to solve simultaneously the data allocation and the parameter estimation. The feasibility and the performance of the procedure is demonstrated using several academic examples.","PeriodicalId":371853,"journal":{"name":"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Parameter estimation of switching piecewise linear system\",\"authors\":\"J. Ragot, G. Mourot, D. Maquin\",\"doi\":\"10.1109/CDC.2003.1271927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the last years, a number of methodological papers on models with discrete parameter shifts have revived interest in the so-called regime switching models. Piecewise linear models are attractive when modelling a wide range of nonlinear system and determining simultaneously i) the data partition ii) the time instant of change iii) the parameter values of the different local models. This is a difficult problem for which no solution exists in the general case and we show here some aspects and particular results concerning the problem of off line learning of switching time series. We propose a method for identifying the parameters of the local models when choosing an adapted weighting function, this function allowing to select the data for which each local model is active. Indeed the proposed method is able to solve simultaneously the data allocation and the parameter estimation. The feasibility and the performance of the procedure is demonstrated using several academic examples.\",\"PeriodicalId\":371853,\"journal\":{\"name\":\"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2003.1271927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2003.1271927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

在过去的几年里,一些关于离散参数转移模型的方法学论文重新引起了人们对所谓的状态切换模型的兴趣。分段线性模型在对大范围非线性系统建模并同时确定i)数据分区ii)变化的时间瞬间iii)不同局部模型的参数值时具有吸引力。这是一个一般情况下不存在解决方案的难题,我们在这里展示了关于切换时间序列离线学习问题的一些方面和特殊结果。我们提出了一种在选择自适应加权函数时识别局部模型参数的方法,该函数允许选择每个局部模型有效的数据。该方法能够同时解决数据分配和参数估计问题。通过几个学术实例验证了该方法的可行性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter estimation of switching piecewise linear system
During the last years, a number of methodological papers on models with discrete parameter shifts have revived interest in the so-called regime switching models. Piecewise linear models are attractive when modelling a wide range of nonlinear system and determining simultaneously i) the data partition ii) the time instant of change iii) the parameter values of the different local models. This is a difficult problem for which no solution exists in the general case and we show here some aspects and particular results concerning the problem of off line learning of switching time series. We propose a method for identifying the parameters of the local models when choosing an adapted weighting function, this function allowing to select the data for which each local model is active. Indeed the proposed method is able to solve simultaneously the data allocation and the parameter estimation. The feasibility and the performance of the procedure is demonstrated using several academic examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信