面向多维约简和数据结构探索的人工神经网络模型

C. S. Teh, Ming Leong Yii, Chwen Jen Chen
{"title":"面向多维约简和数据结构探索的人工神经网络模型","authors":"C. S. Teh, Ming Leong Yii, Chwen Jen Chen","doi":"10.1109/SoCPaR.2009.59","DOIUrl":null,"url":null,"abstract":"This paper proposes an hybrid Artificial Neural Network (ANN) with Self-Organizing Map (SOM) and modified Adaptive Coordinates (AC) for multivariate dimension reduction and data structures exploration. SOM, being a prominent unsupervised learning algorithm, is often used for multivariate data visualization. However, SOM only preserved input space inter-neurons distances and not in the output space because of SOM rigid grid. SOM grid provides little information for visual exploration of the clustering tendency of the multivariate data. Modified AC is therefore proposed to remove SOM’s map rigidity and provides better data topology preserved visualization. Empirical study of the hybrid yielded promising topology preserved visualizations for synthetic and benchmarking datasets.","PeriodicalId":284743,"journal":{"name":"2009 International Conference of Soft Computing and Pattern Recognition","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Artificial Neural Network Model for Multi Dimension Reduction and Data Structure Exploration\",\"authors\":\"C. S. Teh, Ming Leong Yii, Chwen Jen Chen\",\"doi\":\"10.1109/SoCPaR.2009.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an hybrid Artificial Neural Network (ANN) with Self-Organizing Map (SOM) and modified Adaptive Coordinates (AC) for multivariate dimension reduction and data structures exploration. SOM, being a prominent unsupervised learning algorithm, is often used for multivariate data visualization. However, SOM only preserved input space inter-neurons distances and not in the output space because of SOM rigid grid. SOM grid provides little information for visual exploration of the clustering tendency of the multivariate data. Modified AC is therefore proposed to remove SOM’s map rigidity and provides better data topology preserved visualization. Empirical study of the hybrid yielded promising topology preserved visualizations for synthetic and benchmarking datasets.\",\"PeriodicalId\":284743,\"journal\":{\"name\":\"2009 International Conference of Soft Computing and Pattern Recognition\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference of Soft Computing and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SoCPaR.2009.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference of Soft Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoCPaR.2009.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于自组织映射(SOM)和修正自适应坐标(AC)的混合人工神经网络(ANN),用于多元降维和数据结构探索。SOM是一种杰出的无监督学习算法,常用于多变量数据可视化。然而,由于SOM的刚性网格,它只保留了输入空间神经元间的距离,而没有保留输出空间的距离。SOM网格对于多变量数据聚类趋势的视觉探索提供的信息很少。因此,提出了改进的AC,以消除SOM的地图刚性,并提供更好的数据拓扑保留可视化。混合的实证研究产生了有前途的拓扑保存可视化合成和基准数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Artificial Neural Network Model for Multi Dimension Reduction and Data Structure Exploration
This paper proposes an hybrid Artificial Neural Network (ANN) with Self-Organizing Map (SOM) and modified Adaptive Coordinates (AC) for multivariate dimension reduction and data structures exploration. SOM, being a prominent unsupervised learning algorithm, is often used for multivariate data visualization. However, SOM only preserved input space inter-neurons distances and not in the output space because of SOM rigid grid. SOM grid provides little information for visual exploration of the clustering tendency of the multivariate data. Modified AC is therefore proposed to remove SOM’s map rigidity and provides better data topology preserved visualization. Empirical study of the hybrid yielded promising topology preserved visualizations for synthetic and benchmarking datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信