应用重要抽样时核密度估计的渐近性质

Marvin K. Nakayama
{"title":"应用重要抽样时核密度估计的渐近性质","authors":"Marvin K. Nakayama","doi":"10.1109/WSC.2011.6147785","DOIUrl":null,"url":null,"abstract":"We study asymptotic properties of kernel estimators of an unknown density when applying importance sampling (IS). In particular, we provide conditions under which the estimators are consistent, both pointwise and uniformly, and are asymptotically normal. We also study the optimal bandwidth for minimizing the asymptotic mean square error (MSE) at a single point and the asymptotic mean integrated square error (MISE). We show that IS can improve the asymptotic MSE at a single point, but IS always increases the asymptotic MISE. We also give conditions ensuring the consistency of an IS kernel estimator of the sparsity function, which is the inverse of the density evaluated at a quantile. This is useful for constructing a confidence interval for a quantile when applying IS. We also provide conditions under which the IS kernel estimator of the sparsity function is asymptotically normal. We provide some empirical results from experiments with a small model.","PeriodicalId":246140,"journal":{"name":"Proceedings of the 2011 Winter Simulation Conference (WSC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Asymptotic properties of kernel density estimators when applying importance sampling\",\"authors\":\"Marvin K. Nakayama\",\"doi\":\"10.1109/WSC.2011.6147785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study asymptotic properties of kernel estimators of an unknown density when applying importance sampling (IS). In particular, we provide conditions under which the estimators are consistent, both pointwise and uniformly, and are asymptotically normal. We also study the optimal bandwidth for minimizing the asymptotic mean square error (MSE) at a single point and the asymptotic mean integrated square error (MISE). We show that IS can improve the asymptotic MSE at a single point, but IS always increases the asymptotic MISE. We also give conditions ensuring the consistency of an IS kernel estimator of the sparsity function, which is the inverse of the density evaluated at a quantile. This is useful for constructing a confidence interval for a quantile when applying IS. We also provide conditions under which the IS kernel estimator of the sparsity function is asymptotically normal. We provide some empirical results from experiments with a small model.\",\"PeriodicalId\":246140,\"journal\":{\"name\":\"Proceedings of the 2011 Winter Simulation Conference (WSC)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2011.6147785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2011.6147785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

应用重要抽样(IS)研究了未知密度核估计量的渐近性质。特别地,我们提供了估计量是一致的,点向的和一致的,并且是渐近正态的条件。我们还研究了最小化单点渐近均方误差(MSE)和渐近均方积分误差(MISE)的最优带宽。我们证明了IS可以提高单点的渐近MSE,但它总是增加渐近MISE。我们还给出了保证稀疏函数的IS核估计的一致性的条件,它是在一个分位数上评估的密度的逆。这对于在应用is时为分位数构造置信区间很有用。我们还给出了稀疏函数的IS核估计量渐近正态的条件。我们提供了一些小模型实验的经验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic properties of kernel density estimators when applying importance sampling
We study asymptotic properties of kernel estimators of an unknown density when applying importance sampling (IS). In particular, we provide conditions under which the estimators are consistent, both pointwise and uniformly, and are asymptotically normal. We also study the optimal bandwidth for minimizing the asymptotic mean square error (MSE) at a single point and the asymptotic mean integrated square error (MISE). We show that IS can improve the asymptotic MSE at a single point, but IS always increases the asymptotic MISE. We also give conditions ensuring the consistency of an IS kernel estimator of the sparsity function, which is the inverse of the density evaluated at a quantile. This is useful for constructing a confidence interval for a quantile when applying IS. We also provide conditions under which the IS kernel estimator of the sparsity function is asymptotically normal. We provide some empirical results from experiments with a small model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信