基于FFT-CNN-LSTM的模拟电路故障诊断

Bo Sun, Wanzhou Xu, Qing Yang
{"title":"基于FFT-CNN-LSTM的模拟电路故障诊断","authors":"Bo Sun, Wanzhou Xu, Qing Yang","doi":"10.1109/ICNISC54316.2021.00061","DOIUrl":null,"url":null,"abstract":"To improve the performance of analog circuit fault diagnosis, an ensemble fault diagnosis method combining fast Fourier transform (FFT), convolutional neural network (CNN) and long and short-term memory (LSTM) is proposed. First, FFT is used to convert data to the frequency domain. Then special zone features are obtained by CNN network. Finally LSTM network is used to complete the fault diagnosis of the analog circuit. Experiment on CSTV analog circuit shows that FFT-CNN-LSTM can be used to improve the quality of analog circuit fault diagnosis.","PeriodicalId":396802,"journal":{"name":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analog Circuit Fault Diagnosis Based on FFT-CNN-LSTM\",\"authors\":\"Bo Sun, Wanzhou Xu, Qing Yang\",\"doi\":\"10.1109/ICNISC54316.2021.00061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the performance of analog circuit fault diagnosis, an ensemble fault diagnosis method combining fast Fourier transform (FFT), convolutional neural network (CNN) and long and short-term memory (LSTM) is proposed. First, FFT is used to convert data to the frequency domain. Then special zone features are obtained by CNN network. Finally LSTM network is used to complete the fault diagnosis of the analog circuit. Experiment on CSTV analog circuit shows that FFT-CNN-LSTM can be used to improve the quality of analog circuit fault diagnosis.\",\"PeriodicalId\":396802,\"journal\":{\"name\":\"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNISC54316.2021.00061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNISC54316.2021.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了提高模拟电路故障诊断的性能,提出了一种结合快速傅里叶变换(FFT)、卷积神经网络(CNN)和长短期记忆(LSTM)的集成故障诊断方法。首先,使用FFT将数据转换到频域。然后通过CNN网络获取特殊区域特征。最后利用LSTM网络完成模拟电路的故障诊断。在CSTV模拟电路上的实验表明,FFT-CNN-LSTM可以提高模拟电路故障诊断的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analog Circuit Fault Diagnosis Based on FFT-CNN-LSTM
To improve the performance of analog circuit fault diagnosis, an ensemble fault diagnosis method combining fast Fourier transform (FFT), convolutional neural network (CNN) and long and short-term memory (LSTM) is proposed. First, FFT is used to convert data to the frequency domain. Then special zone features are obtained by CNN network. Finally LSTM network is used to complete the fault diagnosis of the analog circuit. Experiment on CSTV analog circuit shows that FFT-CNN-LSTM can be used to improve the quality of analog circuit fault diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信