开发一个Python应用程序,用于从RGB和RGBD摄像机的视频流中识别手势

D.Zh. Satybaldina, N. Glazyrina, V. S. Stepanov, K. A. Kalymova
{"title":"开发一个Python应用程序,用于从RGB和RGBD摄像机的视频流中识别手势","authors":"D.Zh. Satybaldina, N. Glazyrina, V. S. Stepanov, K. A. Kalymova","doi":"10.32523/bulmathenu.2021/3.1","DOIUrl":null,"url":null,"abstract":"Gesture recognition systems have changed a lot recently, due to the development of modern data capture devices (sensors) and the development of new recognition algorithms. The article presents the results of a study for recognizing static and dynamic hand gestures from a video stream from RGB and RGBD cameras, namely from the Logitech HD Pro Webcam C920 webcam and from the Intel RealSense D435 depth camera. Software implementation is done using Python 3.6 tools. Open source Python libraries provide robust implementations of image processing and segmentation algorithms. The feature extraction and gesture classification subsystem is based on the VGG-16 neural network architecture implemented using the TensorFlow and Keras deep learning frameworks. The technical characteristics of the cameras are given. The algorithm of the application is described. The research results aimed at comparing data capture devices under various experimental conditions (distance and illumination) are presented. Experimental results show that using the Intel RealSense D435 depth camera provides more accurate gesture recognition under various experimental conditions.","PeriodicalId":225533,"journal":{"name":"BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Python application for recognizing gestures from a video stream of RGB and RGBD cameras\",\"authors\":\"D.Zh. Satybaldina, N. Glazyrina, V. S. Stepanov, K. A. Kalymova\",\"doi\":\"10.32523/bulmathenu.2021/3.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gesture recognition systems have changed a lot recently, due to the development of modern data capture devices (sensors) and the development of new recognition algorithms. The article presents the results of a study for recognizing static and dynamic hand gestures from a video stream from RGB and RGBD cameras, namely from the Logitech HD Pro Webcam C920 webcam and from the Intel RealSense D435 depth camera. Software implementation is done using Python 3.6 tools. Open source Python libraries provide robust implementations of image processing and segmentation algorithms. The feature extraction and gesture classification subsystem is based on the VGG-16 neural network architecture implemented using the TensorFlow and Keras deep learning frameworks. The technical characteristics of the cameras are given. The algorithm of the application is described. The research results aimed at comparing data capture devices under various experimental conditions (distance and illumination) are presented. Experimental results show that using the Intel RealSense D435 depth camera provides more accurate gesture recognition under various experimental conditions.\",\"PeriodicalId\":225533,\"journal\":{\"name\":\"BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/bulmathenu.2021/3.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/bulmathenu.2021/3.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于现代数据采集设备(传感器)的发展和新的识别算法的发展,手势识别系统最近发生了很大的变化。本文介绍了一项从RGB和RGBD摄像头(即罗技HD Pro网络摄像头C920和英特尔RealSense D435深度摄像头)的视频流中识别静态和动态手势的研究结果。软件实现使用Python 3.6工具完成。开源Python库提供了图像处理和分割算法的健壮实现。特征提取和手势分类子系统基于使用TensorFlow和Keras深度学习框架实现的VGG-16神经网络架构。给出了摄像机的技术特点。介绍了该应用的算法。给出了在不同实验条件(距离和光照)下数据采集装置的比较研究结果。实验结果表明,在各种实验条件下,使用英特尔RealSense D435深度摄像头可以提供更准确的手势识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a Python application for recognizing gestures from a video stream of RGB and RGBD cameras
Gesture recognition systems have changed a lot recently, due to the development of modern data capture devices (sensors) and the development of new recognition algorithms. The article presents the results of a study for recognizing static and dynamic hand gestures from a video stream from RGB and RGBD cameras, namely from the Logitech HD Pro Webcam C920 webcam and from the Intel RealSense D435 depth camera. Software implementation is done using Python 3.6 tools. Open source Python libraries provide robust implementations of image processing and segmentation algorithms. The feature extraction and gesture classification subsystem is based on the VGG-16 neural network architecture implemented using the TensorFlow and Keras deep learning frameworks. The technical characteristics of the cameras are given. The algorithm of the application is described. The research results aimed at comparing data capture devices under various experimental conditions (distance and illumination) are presented. Experimental results show that using the Intel RealSense D435 depth camera provides more accurate gesture recognition under various experimental conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信