太阳能电池板的重构:数学模型与分析

Thanh Ngo Ngoc, N. Quang, Linh Bui Duy
{"title":"太阳能电池板的重构:数学模型与分析","authors":"Thanh Ngo Ngoc, N. Quang, Linh Bui Duy","doi":"10.11648/J.EPES.20190805.11","DOIUrl":null,"url":null,"abstract":"Balance solar radiation between photovoltaic panels or between groups of photovoltaic panels will help to improve the efficiency of electricity generation of the entire solar power system, making the most of the solar energy converted into electricity power. In order to achieve this, it is necessary to reconfigure the connection of photovoltaic panels or groups of photovoltaic panels in the solar power system. In this paper, the general mathematical model for implementing resconfiguring of photovoltaic panels or groups of photovoltaic panels is presented in 2 parts: calculating to find out the optimal configuration connecting photovoltaic panels or groups of photovoltaic panels to achieve the highest performance of the solar system; and find out the best way to switch from the initial connection configuration state to the optimal configuration. The author focuses on analyzing and proposing mathematical models for two main problems in previous studies, developing objective functions and clear constraints, which are the rationale for evaluation of the quality and accuracy of the proposed algorithms, thereby developing more optimal algorithms than previous algorithms. Several experimental studies have been applied on a system of 4 solar panels. The archived results demonstrated the correctness and efficiency of the proposed mathematical model and optimal algorithm.","PeriodicalId":125088,"journal":{"name":"American Journal of Electrical Power and Energy Systems","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reconfiguration of Solar Panels: Mathematical Model and Analysis\",\"authors\":\"Thanh Ngo Ngoc, N. Quang, Linh Bui Duy\",\"doi\":\"10.11648/J.EPES.20190805.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Balance solar radiation between photovoltaic panels or between groups of photovoltaic panels will help to improve the efficiency of electricity generation of the entire solar power system, making the most of the solar energy converted into electricity power. In order to achieve this, it is necessary to reconfigure the connection of photovoltaic panels or groups of photovoltaic panels in the solar power system. In this paper, the general mathematical model for implementing resconfiguring of photovoltaic panels or groups of photovoltaic panels is presented in 2 parts: calculating to find out the optimal configuration connecting photovoltaic panels or groups of photovoltaic panels to achieve the highest performance of the solar system; and find out the best way to switch from the initial connection configuration state to the optimal configuration. The author focuses on analyzing and proposing mathematical models for two main problems in previous studies, developing objective functions and clear constraints, which are the rationale for evaluation of the quality and accuracy of the proposed algorithms, thereby developing more optimal algorithms than previous algorithms. Several experimental studies have been applied on a system of 4 solar panels. The archived results demonstrated the correctness and efficiency of the proposed mathematical model and optimal algorithm.\",\"PeriodicalId\":125088,\"journal\":{\"name\":\"American Journal of Electrical Power and Energy Systems\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Electrical Power and Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.EPES.20190805.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Electrical Power and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.EPES.20190805.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

平衡光伏板之间或光伏板组之间的太阳辐射,有助于提高整个太阳能发电系统的发电效率,使太阳能最大限度地转化为电能。为了实现这一点,需要对太阳能发电系统中光伏板或光伏板组的连接进行重新配置。本文提出了实现光伏板或光伏板组重新配置的通用数学模型,分为两部分:通过计算找出连接光伏板或光伏板组的最优配置,以实现太阳能系统的最高性能;并找出从初始连接配置状态切换到最优配置状态的最佳方法。针对以往研究中存在的两个主要问题,重点分析并提出数学模型,建立目标函数和明确约束,这是评价所提算法质量和准确性的依据,从而开发出比以往算法更优的算法。几项实验研究已应用于一个由4块太阳能电池板组成的系统。存档结果验证了所提数学模型和优化算法的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconfiguration of Solar Panels: Mathematical Model and Analysis
Balance solar radiation between photovoltaic panels or between groups of photovoltaic panels will help to improve the efficiency of electricity generation of the entire solar power system, making the most of the solar energy converted into electricity power. In order to achieve this, it is necessary to reconfigure the connection of photovoltaic panels or groups of photovoltaic panels in the solar power system. In this paper, the general mathematical model for implementing resconfiguring of photovoltaic panels or groups of photovoltaic panels is presented in 2 parts: calculating to find out the optimal configuration connecting photovoltaic panels or groups of photovoltaic panels to achieve the highest performance of the solar system; and find out the best way to switch from the initial connection configuration state to the optimal configuration. The author focuses on analyzing and proposing mathematical models for two main problems in previous studies, developing objective functions and clear constraints, which are the rationale for evaluation of the quality and accuracy of the proposed algorithms, thereby developing more optimal algorithms than previous algorithms. Several experimental studies have been applied on a system of 4 solar panels. The archived results demonstrated the correctness and efficiency of the proposed mathematical model and optimal algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信