非结构化网格的特征空间分析

Ariel Shamir
{"title":"非结构化网格的特征空间分析","authors":"Ariel Shamir","doi":"10.1109/VISUAL.2003.1250371","DOIUrl":null,"url":null,"abstract":"Unstructured meshes are often used in simulations and imaging applications. They provide advanced flexibility in modeling abilities but are more difficult to manipulate and analyze than regular data. This work provides a novel approach for the analysis of unstructured meshes using feature-space clustering and feature-detection. Analyzing and revealing underlying structures in data involve operators on both spatial and functional domains. Slicing concentrates more on the spatial domain, while iso-surfacing or volume rendering concentrate more on the functional domain. Nevertheless, many times it is the combination of the two domains which provides real insight on the structure of the data. In this work, a combined feature-space is defined on top of unstructured meshes in order to search for structure in the data. A point in feature-space includes the spatial coordinates of the point in the mesh domain and all chosen attributes defined on the mesh. A distance measures between points in feature-space is defined enabling the utilization of clustering using the mean shift procedure (previously used for images) on unstructured meshes. Feature space analysis is shown to be useful for feature-extraction, for data exploration and partitioning.","PeriodicalId":372131,"journal":{"name":"IEEE Visualization, 2003. VIS 2003.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Feature-space analysis of unstructured meshes\",\"authors\":\"Ariel Shamir\",\"doi\":\"10.1109/VISUAL.2003.1250371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unstructured meshes are often used in simulations and imaging applications. They provide advanced flexibility in modeling abilities but are more difficult to manipulate and analyze than regular data. This work provides a novel approach for the analysis of unstructured meshes using feature-space clustering and feature-detection. Analyzing and revealing underlying structures in data involve operators on both spatial and functional domains. Slicing concentrates more on the spatial domain, while iso-surfacing or volume rendering concentrate more on the functional domain. Nevertheless, many times it is the combination of the two domains which provides real insight on the structure of the data. In this work, a combined feature-space is defined on top of unstructured meshes in order to search for structure in the data. A point in feature-space includes the spatial coordinates of the point in the mesh domain and all chosen attributes defined on the mesh. A distance measures between points in feature-space is defined enabling the utilization of clustering using the mean shift procedure (previously used for images) on unstructured meshes. Feature space analysis is shown to be useful for feature-extraction, for data exploration and partitioning.\",\"PeriodicalId\":372131,\"journal\":{\"name\":\"IEEE Visualization, 2003. VIS 2003.\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Visualization, 2003. VIS 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2003.1250371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2003. VIS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2003.1250371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

非结构化网格通常用于模拟和成像应用。它们在建模能力方面提供了高级的灵活性,但比常规数据更难操作和分析。这项工作为使用特征空间聚类和特征检测分析非结构化网格提供了一种新的方法。分析和揭示数据中的底层结构涉及空间和功能域的操作符。切片更侧重于空间域,而等表面或体绘制更侧重于功能域。然而,很多时候是这两个领域的结合提供了对数据结构的真正洞察。在这项工作中,在非结构化网格上定义了一个组合特征空间,以便在数据中搜索结构。特征空间中的点包括该点在网格域中的空间坐标和在网格上定义的所有选择属性。定义了特征空间中点之间的距离度量,从而可以在非结构化网格上使用mean shift过程(以前用于图像)进行聚类。特征空间分析对特征提取、数据探索和划分非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature-space analysis of unstructured meshes
Unstructured meshes are often used in simulations and imaging applications. They provide advanced flexibility in modeling abilities but are more difficult to manipulate and analyze than regular data. This work provides a novel approach for the analysis of unstructured meshes using feature-space clustering and feature-detection. Analyzing and revealing underlying structures in data involve operators on both spatial and functional domains. Slicing concentrates more on the spatial domain, while iso-surfacing or volume rendering concentrate more on the functional domain. Nevertheless, many times it is the combination of the two domains which provides real insight on the structure of the data. In this work, a combined feature-space is defined on top of unstructured meshes in order to search for structure in the data. A point in feature-space includes the spatial coordinates of the point in the mesh domain and all chosen attributes defined on the mesh. A distance measures between points in feature-space is defined enabling the utilization of clustering using the mean shift procedure (previously used for images) on unstructured meshes. Feature space analysis is shown to be useful for feature-extraction, for data exploration and partitioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信