T. Hiromatsu, Ryo Ohkubo, Hitoshi Maeda, Toru Fukui, H. Shishido, K. Ono, M. Hashimoto
{"title":"为下一个光刻时代不断挑战","authors":"T. Hiromatsu, Ryo Ohkubo, Hitoshi Maeda, Toru Fukui, H. Shishido, K. Ono, M. Hashimoto","doi":"10.1117/12.2534910","DOIUrl":null,"url":null,"abstract":"This paper shows the latest challenges facing mask blank evolution to support leading-edge lithography processes. ArF immersion lithography has been employing multi-pass exposures to exceed the physical diffraction limit. These photomasks demand very accurate overlay, higher NILS and best CD uniformity for wider process window. The subject was considered from two perspectives from a mask blank producer, which are the mask-making perspective and the wafer lithography perspective. To improve the overlay, we introduced the dedicated CDL (Charge Dissipation Layer) for improving mask registration error. From the lithography resolution perspective, we have developed a high-transmittance phase-shifter film for higher NILS. CDU stability point of view, we described “Superior pattern fidelity CAR”, “High ArF durability SiN phase-shifter” and “Transparent etching stopper”. The industry decided to move to EUV lithography. But there are still many challenges for optical lithography.","PeriodicalId":287066,"journal":{"name":"European Mask and Lithography Conference","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Continuous challenges for next era of lithography\",\"authors\":\"T. Hiromatsu, Ryo Ohkubo, Hitoshi Maeda, Toru Fukui, H. Shishido, K. Ono, M. Hashimoto\",\"doi\":\"10.1117/12.2534910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows the latest challenges facing mask blank evolution to support leading-edge lithography processes. ArF immersion lithography has been employing multi-pass exposures to exceed the physical diffraction limit. These photomasks demand very accurate overlay, higher NILS and best CD uniformity for wider process window. The subject was considered from two perspectives from a mask blank producer, which are the mask-making perspective and the wafer lithography perspective. To improve the overlay, we introduced the dedicated CDL (Charge Dissipation Layer) for improving mask registration error. From the lithography resolution perspective, we have developed a high-transmittance phase-shifter film for higher NILS. CDU stability point of view, we described “Superior pattern fidelity CAR”, “High ArF durability SiN phase-shifter” and “Transparent etching stopper”. The industry decided to move to EUV lithography. But there are still many challenges for optical lithography.\",\"PeriodicalId\":287066,\"journal\":{\"name\":\"European Mask and Lithography Conference\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Mask and Lithography Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2534910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Mask and Lithography Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2534910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper shows the latest challenges facing mask blank evolution to support leading-edge lithography processes. ArF immersion lithography has been employing multi-pass exposures to exceed the physical diffraction limit. These photomasks demand very accurate overlay, higher NILS and best CD uniformity for wider process window. The subject was considered from two perspectives from a mask blank producer, which are the mask-making perspective and the wafer lithography perspective. To improve the overlay, we introduced the dedicated CDL (Charge Dissipation Layer) for improving mask registration error. From the lithography resolution perspective, we have developed a high-transmittance phase-shifter film for higher NILS. CDU stability point of view, we described “Superior pattern fidelity CAR”, “High ArF durability SiN phase-shifter” and “Transparent etching stopper”. The industry decided to move to EUV lithography. But there are still many challenges for optical lithography.