{"title":"延迟细胞神经网络的全局指数稳定性分析","authors":"S. Senan, S. Arik","doi":"10.1109/ISCAS.2005.1465673","DOIUrl":null,"url":null,"abstract":"This paper presents new sufficient conditions for the global exponential stability of the equilibrium point for delayed cellular neural networks (DCNN). It is shown that the use of a more general type of Lyapunov-Krasovskii functional enables us to derive new results for exponential stability of the equilibrium point for DCNN. The results are also compared with the most recent results derived in the literature.","PeriodicalId":191200,"journal":{"name":"2005 IEEE International Symposium on Circuits and Systems","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global exponential stability analysis of delayed cellular neural networks\",\"authors\":\"S. Senan, S. Arik\",\"doi\":\"10.1109/ISCAS.2005.1465673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents new sufficient conditions for the global exponential stability of the equilibrium point for delayed cellular neural networks (DCNN). It is shown that the use of a more general type of Lyapunov-Krasovskii functional enables us to derive new results for exponential stability of the equilibrium point for DCNN. The results are also compared with the most recent results derived in the literature.\",\"PeriodicalId\":191200,\"journal\":{\"name\":\"2005 IEEE International Symposium on Circuits and Systems\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2005.1465673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2005.1465673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global exponential stability analysis of delayed cellular neural networks
This paper presents new sufficient conditions for the global exponential stability of the equilibrium point for delayed cellular neural networks (DCNN). It is shown that the use of a more general type of Lyapunov-Krasovskii functional enables us to derive new results for exponential stability of the equilibrium point for DCNN. The results are also compared with the most recent results derived in the literature.