实际病人特定的心脏血流模拟使用SPH

Scott Kulp, Mingchen Gao, Shaoting Zhang, Z. Qian, S. Voros, Dimitris N. Metaxas, L. Axel
{"title":"实际病人特定的心脏血流模拟使用SPH","authors":"Scott Kulp, Mingchen Gao, Shaoting Zhang, Z. Qian, S. Voros, Dimitris N. Metaxas, L. Axel","doi":"10.1109/ISBI.2013.6556604","DOIUrl":null,"url":null,"abstract":"While recent developments in the field of ventricular blood flow simulations have pushed modeling to increasingly high levels of accuracy, there has been a steep cost in computation time. Current state-of-the-art simulators take days to run, which is impractical for use in a clinical setting. In this paper, we describe novel adaptations of the SPH algorithm to this problem to achieve an order of magnitude faster performance, while maintaining accuracy in the flow. By constructing appropriate boundary particles and wall motion and adding a fast collision detection component to an existing SPH architecture, our system is able to simulate a cardiac cycle in as little as 30 minutes. This breakthrough will, in the near future, allow the useful simulation of blood flow and its related characterization for clinically useful applications.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Practical patient-specific cardiac blood flow simulations using SPH\",\"authors\":\"Scott Kulp, Mingchen Gao, Shaoting Zhang, Z. Qian, S. Voros, Dimitris N. Metaxas, L. Axel\",\"doi\":\"10.1109/ISBI.2013.6556604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While recent developments in the field of ventricular blood flow simulations have pushed modeling to increasingly high levels of accuracy, there has been a steep cost in computation time. Current state-of-the-art simulators take days to run, which is impractical for use in a clinical setting. In this paper, we describe novel adaptations of the SPH algorithm to this problem to achieve an order of magnitude faster performance, while maintaining accuracy in the flow. By constructing appropriate boundary particles and wall motion and adding a fast collision detection component to an existing SPH architecture, our system is able to simulate a cardiac cycle in as little as 30 minutes. This breakthrough will, in the near future, allow the useful simulation of blood flow and its related characterization for clinically useful applications.\",\"PeriodicalId\":178011,\"journal\":{\"name\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2013.6556604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

虽然最近在心室血流模拟领域的发展已经将建模推向越来越高的精度水平,但计算时间的成本却很高。目前最先进的模拟器需要几天才能运行,这在临床环境中是不切实际的。在本文中,我们描述了SPH算法对该问题的新适应,以实现一个数量级的更快的性能,同时保持流中的准确性。通过构建适当的边界粒子和壁运动,并在现有的SPH架构中添加快速碰撞检测组件,我们的系统能够在短短30分钟内模拟心脏周期。在不久的将来,这一突破将允许有用的血流模拟及其相关特征用于临床有用的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical patient-specific cardiac blood flow simulations using SPH
While recent developments in the field of ventricular blood flow simulations have pushed modeling to increasingly high levels of accuracy, there has been a steep cost in computation time. Current state-of-the-art simulators take days to run, which is impractical for use in a clinical setting. In this paper, we describe novel adaptations of the SPH algorithm to this problem to achieve an order of magnitude faster performance, while maintaining accuracy in the flow. By constructing appropriate boundary particles and wall motion and adding a fast collision detection component to an existing SPH architecture, our system is able to simulate a cardiac cycle in as little as 30 minutes. This breakthrough will, in the near future, allow the useful simulation of blood flow and its related characterization for clinically useful applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信