使用概率图谱和卷积神经网络的计算机断层扫描中的心脏分割

J. O. B. Diniz, J. Ferreira, G. A. D. Silva, D. B. P. Quintanilha, A. C. Silva, A. Paiva
{"title":"使用概率图谱和卷积神经网络的计算机断层扫描中的心脏分割","authors":"J. O. B. Diniz, J. Ferreira, G. A. D. Silva, D. B. P. Quintanilha, A. C. Silva, A. Paiva","doi":"10.5753/sbcas.2021.16055","DOIUrl":null,"url":null,"abstract":"Órgãos em risco (OARs) são tecidos saudáveis ao redor do câncer que devem ser preservados na radioterapia (RT). O coração é um dos OARs fundamentais, assim, softwares computacionais foram desenvolvidos para auxiliar os especialistas na segmentação. Neste trabalho, propõe-se um método automático para segmentação a partir da tomografia computadorizada. O método consiste em 3 etapas: (1) aquisição de banco de dados público e diversificado; (2) padronização de volume usando registro e correspondência de histograma; e (3) segmentação do coração usando atlas e U-Net com blocos residuais (ResU-Net). Assim, alcançou-se 92,53% de Dice e 84,73% de Jaccard. Com a inovação e os resultados, mostra-se que o método proposto é promissor.","PeriodicalId":413867,"journal":{"name":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Segmentação de coração em tomografias computadorizadas utilizando atlas probabilístico e redes neurais convolucionais\",\"authors\":\"J. O. B. Diniz, J. Ferreira, G. A. D. Silva, D. B. P. Quintanilha, A. C. Silva, A. Paiva\",\"doi\":\"10.5753/sbcas.2021.16055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Órgãos em risco (OARs) são tecidos saudáveis ao redor do câncer que devem ser preservados na radioterapia (RT). O coração é um dos OARs fundamentais, assim, softwares computacionais foram desenvolvidos para auxiliar os especialistas na segmentação. Neste trabalho, propõe-se um método automático para segmentação a partir da tomografia computadorizada. O método consiste em 3 etapas: (1) aquisição de banco de dados público e diversificado; (2) padronização de volume usando registro e correspondência de histograma; e (3) segmentação do coração usando atlas e U-Net com blocos residuais (ResU-Net). Assim, alcançou-se 92,53% de Dice e 84,73% de Jaccard. Com a inovação e os resultados, mostra-se que o método proposto é promissor.\",\"PeriodicalId\":413867,\"journal\":{\"name\":\"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas.2021.16055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2021.16055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

危险器官(OARs)是癌症周围的健康组织,必须在放疗(RT)中保存。心脏是一个基本的OARs,因此计算机软件被开发来帮助分割专家。这个工作,提出了一种自动的分割tomografi的单。的方法包括三个步骤:(1)购买公共数据库和五星级fi市场;(2)采用记录和直方图匹配的体积标准化;(3)使用atlas和U-Net残障块进行心脏分割(ResU-Net)。因此,Dice达到92.53%,Jaccard达到84.73%。通过创新和结果表明,该方法具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentação de coração em tomografias computadorizadas utilizando atlas probabilístico e redes neurais convolucionais
Órgãos em risco (OARs) são tecidos saudáveis ao redor do câncer que devem ser preservados na radioterapia (RT). O coração é um dos OARs fundamentais, assim, softwares computacionais foram desenvolvidos para auxiliar os especialistas na segmentação. Neste trabalho, propõe-se um método automático para segmentação a partir da tomografia computadorizada. O método consiste em 3 etapas: (1) aquisição de banco de dados público e diversificado; (2) padronização de volume usando registro e correspondência de histograma; e (3) segmentação do coração usando atlas e U-Net com blocos residuais (ResU-Net). Assim, alcançou-se 92,53% de Dice e 84,73% de Jaccard. Com a inovação e os resultados, mostra-se que o método proposto é promissor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信