双向模型预测控制中二维频响分析及权重选择的见解

Junqiang Fan, G. Stewart, G. Dumont
{"title":"双向模型预测控制中二维频响分析及权重选择的见解","authors":"Junqiang Fan, G. Stewart, G. Dumont","doi":"10.1109/CDC.2003.1271727","DOIUrl":null,"url":null,"abstract":"This paper describes the application of a technique for the two-dimensional frequency domain analysis of the closed-loop performance of a cross-directional papermaking process under industrial model predictive control (MPC). For such spatially-distributed systems, the process model and the linear portion of the controller are approximated as linear, spatially-invariant, and time-invariant. The closed-loop performance of these systems can then be analyzed in terms of a family of SISO systems by diagonalizing the large-scale transfer matrices across spatial frequencies. Familiar concepts from control engineering such as bandwidth and stability margin are extended into the two-dimensional frequency domain.","PeriodicalId":371853,"journal":{"name":"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Two-dimensional frequency response analysis and insights for weight selection in cross-directional model predictive control\",\"authors\":\"Junqiang Fan, G. Stewart, G. Dumont\",\"doi\":\"10.1109/CDC.2003.1271727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the application of a technique for the two-dimensional frequency domain analysis of the closed-loop performance of a cross-directional papermaking process under industrial model predictive control (MPC). For such spatially-distributed systems, the process model and the linear portion of the controller are approximated as linear, spatially-invariant, and time-invariant. The closed-loop performance of these systems can then be analyzed in terms of a family of SISO systems by diagonalizing the large-scale transfer matrices across spatial frequencies. Familiar concepts from control engineering such as bandwidth and stability margin are extended into the two-dimensional frequency domain.\",\"PeriodicalId\":371853,\"journal\":{\"name\":\"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2003.1271727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2003.1271727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文介绍了工业模型预测控制(MPC)下双向造纸过程闭环性能二维频域分析技术的应用。对于这样的空间分布系统,过程模型和控制器的线性部分近似为线性、空间不变和时不变。通过对角化跨空间频率的大尺度传递矩阵,这些系统的闭环性能可以根据一系列SISO系统进行分析。从控制工程中熟悉的概念,如带宽和稳定裕度被扩展到二维频域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-dimensional frequency response analysis and insights for weight selection in cross-directional model predictive control
This paper describes the application of a technique for the two-dimensional frequency domain analysis of the closed-loop performance of a cross-directional papermaking process under industrial model predictive control (MPC). For such spatially-distributed systems, the process model and the linear portion of the controller are approximated as linear, spatially-invariant, and time-invariant. The closed-loop performance of these systems can then be analyzed in terms of a family of SISO systems by diagonalizing the large-scale transfer matrices across spatial frequencies. Familiar concepts from control engineering such as bandwidth and stability margin are extended into the two-dimensional frequency domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信