跳跃机器人仿生曲柄滑块机构设计与运动学仿真

Zhao Kai, Yin Junmao, Chen Diansheng, Wang Tianmiao
{"title":"跳跃机器人仿生曲柄滑块机构设计与运动学仿真","authors":"Zhao Kai, Yin Junmao, Chen Diansheng, Wang Tianmiao","doi":"10.1109/ROBIO.2012.6491065","DOIUrl":null,"url":null,"abstract":"Jumping locomotion is an ideal means of overcoming obstacles and traversing rough terrain. By taking inspirations from the locust, this paper presents the development and analysis of a novel crank-slider jumping mechanism. Firstly, the locust morphology is described and the posture of hindlimbs at take-off phase is analyzed. Base on that, a crank-slider mechanism is proposed to mimic the locust hindlimb. The mechanical analysis shows that the ground reaction force is similar to that of the locust during take-off stage, which reduce the possibility of premature lift-off and lays the foundation for developing the small jumping robot. Then, the designed robot employs elastic elements in the crank-slider mechanism, which is triggered by the segment-gear system. At last, its jumping performance is verified by kinematic modeling.","PeriodicalId":426468,"journal":{"name":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Design and kinematics simulation for bionic crank-slider mechanism of jumping robot\",\"authors\":\"Zhao Kai, Yin Junmao, Chen Diansheng, Wang Tianmiao\",\"doi\":\"10.1109/ROBIO.2012.6491065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Jumping locomotion is an ideal means of overcoming obstacles and traversing rough terrain. By taking inspirations from the locust, this paper presents the development and analysis of a novel crank-slider jumping mechanism. Firstly, the locust morphology is described and the posture of hindlimbs at take-off phase is analyzed. Base on that, a crank-slider mechanism is proposed to mimic the locust hindlimb. The mechanical analysis shows that the ground reaction force is similar to that of the locust during take-off stage, which reduce the possibility of premature lift-off and lays the foundation for developing the small jumping robot. Then, the designed robot employs elastic elements in the crank-slider mechanism, which is triggered by the segment-gear system. At last, its jumping performance is verified by kinematic modeling.\",\"PeriodicalId\":426468,\"journal\":{\"name\":\"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2012.6491065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2012.6491065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

跳跃运动是克服障碍和穿越崎岖地形的理想手段。本文以蝗虫为灵感,提出了一种新型曲柄滑块跳跃机构的研制与分析。首先,描述了蝗虫的形态,分析了蝗虫起飞时的后肢姿态。在此基础上,提出了一种模拟蝗虫后肢的曲柄滑块机构。力学分析表明,地面反作用力与蝗虫在起飞阶段的反作用力相似,减少了过早升空的可能性,为研制小型跳跃机器人奠定了基础。然后,设计的机器人在曲柄滑块机构中加入弹性元件,由节段齿轮系统触发。最后,通过运动学建模验证了其跳跃性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and kinematics simulation for bionic crank-slider mechanism of jumping robot
Jumping locomotion is an ideal means of overcoming obstacles and traversing rough terrain. By taking inspirations from the locust, this paper presents the development and analysis of a novel crank-slider jumping mechanism. Firstly, the locust morphology is described and the posture of hindlimbs at take-off phase is analyzed. Base on that, a crank-slider mechanism is proposed to mimic the locust hindlimb. The mechanical analysis shows that the ground reaction force is similar to that of the locust during take-off stage, which reduce the possibility of premature lift-off and lays the foundation for developing the small jumping robot. Then, the designed robot employs elastic elements in the crank-slider mechanism, which is triggered by the segment-gear system. At last, its jumping performance is verified by kinematic modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信