基于RNN的智慧城市空气质量预警预测系统的开发

P. N. Huu, H. Tuan, Hiep Le Ngoc
{"title":"基于RNN的智慧城市空气质量预警预测系统的开发","authors":"P. N. Huu, H. Tuan, Hiep Le Ngoc","doi":"10.1109/NICS51282.2020.9335901","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to build an intelligent air quality warning and prediction system for smart cities. The system will automatically provide information of temperature, humidity, dust concentration, and UV rays in defined areas. The system includes two parts, namely sensor and communication blocks. Sensor block will collect information and transfer to the server that performs to forecast and display the parameters (temperature, humidity, dust concentration, and UV rays). In communication block, the data is transmitted by SIM module to website to provide information and warn to the user if finding any problems. In our system, we use recurrent neural network (RNN) to forecast the change of the parameters. The results show that the proposal system improves the accuracy above 90% comparing to real system.","PeriodicalId":308944,"journal":{"name":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of Warning and Predicting System for Quality of Air in Smart Cities Using RNN\",\"authors\":\"P. N. Huu, H. Tuan, Hiep Le Ngoc\",\"doi\":\"10.1109/NICS51282.2020.9335901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose to build an intelligent air quality warning and prediction system for smart cities. The system will automatically provide information of temperature, humidity, dust concentration, and UV rays in defined areas. The system includes two parts, namely sensor and communication blocks. Sensor block will collect information and transfer to the server that performs to forecast and display the parameters (temperature, humidity, dust concentration, and UV rays). In communication block, the data is transmitted by SIM module to website to provide information and warn to the user if finding any problems. In our system, we use recurrent neural network (RNN) to forecast the change of the parameters. The results show that the proposal system improves the accuracy above 90% comparing to real system.\",\"PeriodicalId\":308944,\"journal\":{\"name\":\"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS51282.2020.9335901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS51282.2020.9335901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出构建面向智慧城市的智能空气质量预警预测系统。该系统将自动提供指定区域的温度、湿度、粉尘浓度和紫外线等信息。该系统包括传感器和通信模块两部分。传感器模块将采集到的信息传递给服务器进行参数(温度、湿度、粉尘浓度、紫外线)的预测和显示。在通信块中,通过SIM模块将数据传输到网站,提供信息,并在发现问题时向用户发出警告。在我们的系统中,我们使用递归神经网络(RNN)来预测参数的变化。结果表明,与实际系统相比,该系统的准确率提高了90%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Warning and Predicting System for Quality of Air in Smart Cities Using RNN
In this paper, we propose to build an intelligent air quality warning and prediction system for smart cities. The system will automatically provide information of temperature, humidity, dust concentration, and UV rays in defined areas. The system includes two parts, namely sensor and communication blocks. Sensor block will collect information and transfer to the server that performs to forecast and display the parameters (temperature, humidity, dust concentration, and UV rays). In communication block, the data is transmitted by SIM module to website to provide information and warn to the user if finding any problems. In our system, we use recurrent neural network (RNN) to forecast the change of the parameters. The results show that the proposal system improves the accuracy above 90% comparing to real system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信