基于噪声训练数据的滤波特征选择算法的实证研究

Weiwei Yuan, D. Guan, Linshan Shen, Haiwei Pan
{"title":"基于噪声训练数据的滤波特征选择算法的实证研究","authors":"Weiwei Yuan, D. Guan, Linshan Shen, Haiwei Pan","doi":"10.1109/ICIST.2014.6920367","DOIUrl":null,"url":null,"abstract":"In this research, we empirically evaluate the performance of filter based feature selection using noisy data containing mislabeled samples. Mislabeled data are present in many real applications, but existing studies have not explored their influence on feature selection. We tested six well-known filter feature selection methods using datasets with pre-defined mislabeled ratios. Our results show that in most cases, feature selection performance degrades with increasing mislabeled ratios. We also evaluate the effects of mislabeled data on small size data feature selection and outline the more serious negative effects of mislabeled data. The results of this study suggest that most feature selection methods are not robust enough for noisy data containing mislabeled samples. Therefore, proper processing of noisy data before feature selection should be considered.","PeriodicalId":306383,"journal":{"name":"2014 4th IEEE International Conference on Information Science and Technology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An empirical study of filter-based feature selection algorithms using noisy training data\",\"authors\":\"Weiwei Yuan, D. Guan, Linshan Shen, Haiwei Pan\",\"doi\":\"10.1109/ICIST.2014.6920367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we empirically evaluate the performance of filter based feature selection using noisy data containing mislabeled samples. Mislabeled data are present in many real applications, but existing studies have not explored their influence on feature selection. We tested six well-known filter feature selection methods using datasets with pre-defined mislabeled ratios. Our results show that in most cases, feature selection performance degrades with increasing mislabeled ratios. We also evaluate the effects of mislabeled data on small size data feature selection and outline the more serious negative effects of mislabeled data. The results of this study suggest that most feature selection methods are not robust enough for noisy data containing mislabeled samples. Therefore, proper processing of noisy data before feature selection should be considered.\",\"PeriodicalId\":306383,\"journal\":{\"name\":\"2014 4th IEEE International Conference on Information Science and Technology\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 4th IEEE International Conference on Information Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2014.6920367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 4th IEEE International Conference on Information Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2014.6920367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本研究中,我们使用包含错误标记样本的噪声数据来实证评估基于滤波器的特征选择的性能。在许多实际应用中都存在误标注数据,但现有研究尚未探讨其对特征选择的影响。我们使用预定义错标比率的数据集测试了六种众所周知的过滤器特征选择方法。我们的结果表明,在大多数情况下,特征选择性能随着错误标记比率的增加而下降。我们还评估了错误标记数据对小尺寸数据特征选择的影响,并概述了错误标记数据的更严重的负面影响。本研究的结果表明,大多数特征选择方法对于包含错误标记样本的噪声数据不够鲁棒。因此,在特征选择之前,应该考虑对噪声数据进行适当的处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An empirical study of filter-based feature selection algorithms using noisy training data
In this research, we empirically evaluate the performance of filter based feature selection using noisy data containing mislabeled samples. Mislabeled data are present in many real applications, but existing studies have not explored their influence on feature selection. We tested six well-known filter feature selection methods using datasets with pre-defined mislabeled ratios. Our results show that in most cases, feature selection performance degrades with increasing mislabeled ratios. We also evaluate the effects of mislabeled data on small size data feature selection and outline the more serious negative effects of mislabeled data. The results of this study suggest that most feature selection methods are not robust enough for noisy data containing mislabeled samples. Therefore, proper processing of noisy data before feature selection should be considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信