基于tanh函数的燃料电池无人机动力系统高阶滑模观测器

Liang Guo, Y. Huangfu, Rui Ma
{"title":"基于tanh函数的燃料电池无人机动力系统高阶滑模观测器","authors":"Liang Guo, Y. Huangfu, Rui Ma","doi":"10.1109/IAS.2019.8912436","DOIUrl":null,"url":null,"abstract":"Compared with the traditional unmanned aerial vehicle (UAV), the Fuel Cell (FC) UAV has the advantages of long endurance, high power density, low noise, low pollution, and excellent thermal stealth performance. The paper aims to solve the uncertain disturbance problem in a UAV hybrid power system consisting of a fuel cell stack and a battery bank, such as UAV maneuver flight and oxygen starvation at high altitude. A novel high-order sliding mode observer (HOSMO) based on hyperbolic tangent function tanh(x) is proposed to stable the DC bus voltage of the FC-UAV, which combines a dual-loop super-twisting (ST) high-order sliding mode control (HOSMC). In addition, the main control object is a floating interleaved Buck-Boost bidirectional DC/DC converter (FIB-BDC) with high-conversion-ratio, low current ripple, and low stress. Through the proposed control method in the paper, the robustness and dynamic response of the system can be improved, and the chattering problem of HOSMO will be eliminated. What's more, The stability of the proposed observer is proved by Lyapunov theory and the convergence conditions are given. Finally, theoretical analysis and simulation experiments validate the effectiveness of the proposed approach.","PeriodicalId":376719,"journal":{"name":"2019 IEEE Industry Applications Society Annual Meeting","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Novel High-Order Sliding Mode Observer Based on Tanh-Function for a Fuel Cell UAV Power System with Uncertain Disturbance\",\"authors\":\"Liang Guo, Y. Huangfu, Rui Ma\",\"doi\":\"10.1109/IAS.2019.8912436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared with the traditional unmanned aerial vehicle (UAV), the Fuel Cell (FC) UAV has the advantages of long endurance, high power density, low noise, low pollution, and excellent thermal stealth performance. The paper aims to solve the uncertain disturbance problem in a UAV hybrid power system consisting of a fuel cell stack and a battery bank, such as UAV maneuver flight and oxygen starvation at high altitude. A novel high-order sliding mode observer (HOSMO) based on hyperbolic tangent function tanh(x) is proposed to stable the DC bus voltage of the FC-UAV, which combines a dual-loop super-twisting (ST) high-order sliding mode control (HOSMC). In addition, the main control object is a floating interleaved Buck-Boost bidirectional DC/DC converter (FIB-BDC) with high-conversion-ratio, low current ripple, and low stress. Through the proposed control method in the paper, the robustness and dynamic response of the system can be improved, and the chattering problem of HOSMO will be eliminated. What's more, The stability of the proposed observer is proved by Lyapunov theory and the convergence conditions are given. Finally, theoretical analysis and simulation experiments validate the effectiveness of the proposed approach.\",\"PeriodicalId\":376719,\"journal\":{\"name\":\"2019 IEEE Industry Applications Society Annual Meeting\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2019.8912436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2019.8912436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

与传统无人机相比,燃料电池无人机具有续航时间长、功率密度高、噪声低、污染少、热隐身性能优异等优点。本文旨在解决由燃料电池堆和电池组组成的无人机混合动力系统中的不确定干扰问题,如无人机机动飞行和高空缺氧问题。为了稳定FC-UAV直流母线电压,提出了一种基于双曲正切函数tanh(x)的新型高阶滑模观测器(HOSMO),该观测器结合了双环超扭转(ST)高阶滑模控制(HOSMC)。另外,主要控制对象为浮动交错Buck-Boost双向DC/DC变换器(FIB-BDC),具有高转换比、低纹波电流、低应力等特点。通过本文提出的控制方法,可以提高系统的鲁棒性和动态响应,消除HOSMO的抖振问题。利用李雅普诺夫理论证明了该观测器的稳定性,并给出了其收敛条件。最后,通过理论分析和仿真实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel High-Order Sliding Mode Observer Based on Tanh-Function for a Fuel Cell UAV Power System with Uncertain Disturbance
Compared with the traditional unmanned aerial vehicle (UAV), the Fuel Cell (FC) UAV has the advantages of long endurance, high power density, low noise, low pollution, and excellent thermal stealth performance. The paper aims to solve the uncertain disturbance problem in a UAV hybrid power system consisting of a fuel cell stack and a battery bank, such as UAV maneuver flight and oxygen starvation at high altitude. A novel high-order sliding mode observer (HOSMO) based on hyperbolic tangent function tanh(x) is proposed to stable the DC bus voltage of the FC-UAV, which combines a dual-loop super-twisting (ST) high-order sliding mode control (HOSMC). In addition, the main control object is a floating interleaved Buck-Boost bidirectional DC/DC converter (FIB-BDC) with high-conversion-ratio, low current ripple, and low stress. Through the proposed control method in the paper, the robustness and dynamic response of the system can be improved, and the chattering problem of HOSMO will be eliminated. What's more, The stability of the proposed observer is proved by Lyapunov theory and the convergence conditions are given. Finally, theoretical analysis and simulation experiments validate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信