{"title":"在大型蜂窝网络中,用户吞吐量如何依赖于流量需求","authors":"B. Błaszczyszyn, Miodrag Jovanovic, M. Karray","doi":"10.1109/WIOPT.2014.6850355","DOIUrl":null,"url":null,"abstract":"We assume a space-time Poisson process of call arrivals on the infinite plane, independently marked by data volumes and served by a cellular network modeled by an infinite ergodic point process of base stations. Each point of this point process represents the location of a base station that applies a processor sharing policy to serve users arriving in its vicinity, modeled by the Voronoi cell, possibly perturbed by some random signal propagation effects. User service rates depend on their signal-to-interference-and-noise ratios with respect to the serving station. Little's law allows to express the mean user throughput in any region of this network model as the ratio of the mean traffic demand to the steady-state mean number of users in this region. Using ergodic arguments and the Palm theoretic formalism, we define a global mean user throughput in the cellular network and prove that it is equal to the ratio of mean traffic demand to the mean number of users in the steady state of the “typical cell” of the network. Here, both means account for double averaging: over time and network geometry, and can be related to the per-surface traffic demand, base-station density and the spatial distribution of the signal-to-interference-and-noise ratio. This latter accounts for network irregularities, shadowing and cell dependence via some cell-load equations. Inspired by the analysis of the typical cell, we propose also a simpler, approximate, but fully analytic approach, called the mean cell approach. The key quantity explicitly calculated in this approach is the cell load. In analogy to the load factor of the (classical) M/G/1 processor sharing queue, it characterizes the stability condition, mean number of users and the mean user throughput. We validate our approach comparing analytical and simulation results for Poisson network model to real-network measurements.","PeriodicalId":381489,"journal":{"name":"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"How user throughput depends on the traffic demand in large cellular networks\",\"authors\":\"B. Błaszczyszyn, Miodrag Jovanovic, M. Karray\",\"doi\":\"10.1109/WIOPT.2014.6850355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We assume a space-time Poisson process of call arrivals on the infinite plane, independently marked by data volumes and served by a cellular network modeled by an infinite ergodic point process of base stations. Each point of this point process represents the location of a base station that applies a processor sharing policy to serve users arriving in its vicinity, modeled by the Voronoi cell, possibly perturbed by some random signal propagation effects. User service rates depend on their signal-to-interference-and-noise ratios with respect to the serving station. Little's law allows to express the mean user throughput in any region of this network model as the ratio of the mean traffic demand to the steady-state mean number of users in this region. Using ergodic arguments and the Palm theoretic formalism, we define a global mean user throughput in the cellular network and prove that it is equal to the ratio of mean traffic demand to the mean number of users in the steady state of the “typical cell” of the network. Here, both means account for double averaging: over time and network geometry, and can be related to the per-surface traffic demand, base-station density and the spatial distribution of the signal-to-interference-and-noise ratio. This latter accounts for network irregularities, shadowing and cell dependence via some cell-load equations. Inspired by the analysis of the typical cell, we propose also a simpler, approximate, but fully analytic approach, called the mean cell approach. The key quantity explicitly calculated in this approach is the cell load. In analogy to the load factor of the (classical) M/G/1 processor sharing queue, it characterizes the stability condition, mean number of users and the mean user throughput. We validate our approach comparing analytical and simulation results for Poisson network model to real-network measurements.\",\"PeriodicalId\":381489,\"journal\":{\"name\":\"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIOPT.2014.6850355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIOPT.2014.6850355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How user throughput depends on the traffic demand in large cellular networks
We assume a space-time Poisson process of call arrivals on the infinite plane, independently marked by data volumes and served by a cellular network modeled by an infinite ergodic point process of base stations. Each point of this point process represents the location of a base station that applies a processor sharing policy to serve users arriving in its vicinity, modeled by the Voronoi cell, possibly perturbed by some random signal propagation effects. User service rates depend on their signal-to-interference-and-noise ratios with respect to the serving station. Little's law allows to express the mean user throughput in any region of this network model as the ratio of the mean traffic demand to the steady-state mean number of users in this region. Using ergodic arguments and the Palm theoretic formalism, we define a global mean user throughput in the cellular network and prove that it is equal to the ratio of mean traffic demand to the mean number of users in the steady state of the “typical cell” of the network. Here, both means account for double averaging: over time and network geometry, and can be related to the per-surface traffic demand, base-station density and the spatial distribution of the signal-to-interference-and-noise ratio. This latter accounts for network irregularities, shadowing and cell dependence via some cell-load equations. Inspired by the analysis of the typical cell, we propose also a simpler, approximate, but fully analytic approach, called the mean cell approach. The key quantity explicitly calculated in this approach is the cell load. In analogy to the load factor of the (classical) M/G/1 processor sharing queue, it characterizes the stability condition, mean number of users and the mean user throughput. We validate our approach comparing analytical and simulation results for Poisson network model to real-network measurements.