{"title":"融合舆情信息和股票数值数据进行基于深度学习的股票走势预测","authors":"geng Lv, Jianjiang Cui","doi":"10.1117/12.2691661","DOIUrl":null,"url":null,"abstract":"Unlike other stock markets participants, the participants in China mainland are composed of individual investors, which account for 82% of the trading volume of the stock market. The decision-making basis of individual investors is mainly public opinion and recent stock prices. Therefore, the public opinion on professional stock social sites has an important impact on the decision of individual investors, which in turn affects the trend of the stock market. However, the previous stock market forecasting methods mostly ignored the influence of public opinion information on the market. For this reason, this paper proposes a novel framework to predict the stock trend by using both public opinion and stock numerical data. The original contributions of this paper include stock commentary word embedding model based on the stock comment text data crawled from https://xueqiu.com through two-stage training and LSTM-CNN layered model based on the improved self-attention mechanism. Two main experiments are conducted: the first experiment extract stock commentary word embedding, and the second experiment forecasts the stock price trends of Shanghai and Shenzhen A-share market. Results show that: 1)LSTM-CNN layered model is better than previous methods; 2)The combination of public opinion information and numerical data can improve the performance of the model; 3)Stock commentary word embedding model is better than pre-training word embedding model; 4) The longer the data span, the better the stock forecasting model will perform","PeriodicalId":361127,"journal":{"name":"International Conference on Images, Signals, and Computing","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Merging public opinion information and stock numerical data for stock trend prediction based on deep learning\",\"authors\":\"geng Lv, Jianjiang Cui\",\"doi\":\"10.1117/12.2691661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike other stock markets participants, the participants in China mainland are composed of individual investors, which account for 82% of the trading volume of the stock market. The decision-making basis of individual investors is mainly public opinion and recent stock prices. Therefore, the public opinion on professional stock social sites has an important impact on the decision of individual investors, which in turn affects the trend of the stock market. However, the previous stock market forecasting methods mostly ignored the influence of public opinion information on the market. For this reason, this paper proposes a novel framework to predict the stock trend by using both public opinion and stock numerical data. The original contributions of this paper include stock commentary word embedding model based on the stock comment text data crawled from https://xueqiu.com through two-stage training and LSTM-CNN layered model based on the improved self-attention mechanism. Two main experiments are conducted: the first experiment extract stock commentary word embedding, and the second experiment forecasts the stock price trends of Shanghai and Shenzhen A-share market. Results show that: 1)LSTM-CNN layered model is better than previous methods; 2)The combination of public opinion information and numerical data can improve the performance of the model; 3)Stock commentary word embedding model is better than pre-training word embedding model; 4) The longer the data span, the better the stock forecasting model will perform\",\"PeriodicalId\":361127,\"journal\":{\"name\":\"International Conference on Images, Signals, and Computing\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Images, Signals, and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2691661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Images, Signals, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2691661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Merging public opinion information and stock numerical data for stock trend prediction based on deep learning
Unlike other stock markets participants, the participants in China mainland are composed of individual investors, which account for 82% of the trading volume of the stock market. The decision-making basis of individual investors is mainly public opinion and recent stock prices. Therefore, the public opinion on professional stock social sites has an important impact on the decision of individual investors, which in turn affects the trend of the stock market. However, the previous stock market forecasting methods mostly ignored the influence of public opinion information on the market. For this reason, this paper proposes a novel framework to predict the stock trend by using both public opinion and stock numerical data. The original contributions of this paper include stock commentary word embedding model based on the stock comment text data crawled from https://xueqiu.com through two-stage training and LSTM-CNN layered model based on the improved self-attention mechanism. Two main experiments are conducted: the first experiment extract stock commentary word embedding, and the second experiment forecasts the stock price trends of Shanghai and Shenzhen A-share market. Results show that: 1)LSTM-CNN layered model is better than previous methods; 2)The combination of public opinion information and numerical data can improve the performance of the model; 3)Stock commentary word embedding model is better than pre-training word embedding model; 4) The longer the data span, the better the stock forecasting model will perform