应用于图像识别的软处理器内核的片上进化

K. Glette, J. Tørresen, M. Yasunaga, Y. Yamaguchi
{"title":"应用于图像识别的软处理器内核的片上进化","authors":"K. Glette, J. Tørresen, M. Yasunaga, Y. Yamaguchi","doi":"10.1109/AHS.2006.55","DOIUrl":null,"url":null,"abstract":"To increase the flexibility of single-chip evolvable hardware systems, we explore possibilities of systems with the evolutionary algorithm implemented in software on an on-chip processor. This gives higher flexibility compared to implementing an evolutionary algorithm directly in hardware, since the parameters and behaviour of the algorithm can easily be changed, and complex operators are more feasible to implement. In this paper a Xilinx MicroBlaze soft core processor is used, and the system is implemented in a Xilinx FPGA. A suitable hardware architecture for image recognition has been proposed, and it is applied to a face recognition task. Data buses and higher level functions have been utilized in order to reduce the search space for the evolutionary algorithm. Experiments have been performed on the physical device, with software running in parallel with fitness computation in digital logic. Results show that the MicroBlaze system evolves at half the speed of a Pentium M system running at 17 times the FPGA clock frequency. The distinction of a certain face from others is performed at 94.9% accuracy. In addition, the possibilities for evolutionary adaptation over time are explored by introducing changes in the training set. The system shows ability to adapt to these changes","PeriodicalId":232693,"journal":{"name":"First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"On-Chip Evolution Using a Soft Processor Core Applied to Image Recognition\",\"authors\":\"K. Glette, J. Tørresen, M. Yasunaga, Y. Yamaguchi\",\"doi\":\"10.1109/AHS.2006.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To increase the flexibility of single-chip evolvable hardware systems, we explore possibilities of systems with the evolutionary algorithm implemented in software on an on-chip processor. This gives higher flexibility compared to implementing an evolutionary algorithm directly in hardware, since the parameters and behaviour of the algorithm can easily be changed, and complex operators are more feasible to implement. In this paper a Xilinx MicroBlaze soft core processor is used, and the system is implemented in a Xilinx FPGA. A suitable hardware architecture for image recognition has been proposed, and it is applied to a face recognition task. Data buses and higher level functions have been utilized in order to reduce the search space for the evolutionary algorithm. Experiments have been performed on the physical device, with software running in parallel with fitness computation in digital logic. Results show that the MicroBlaze system evolves at half the speed of a Pentium M system running at 17 times the FPGA clock frequency. The distinction of a certain face from others is performed at 94.9% accuracy. In addition, the possibilities for evolutionary adaptation over time are explored by introducing changes in the training set. The system shows ability to adapt to these changes\",\"PeriodicalId\":232693,\"journal\":{\"name\":\"First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AHS.2006.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2006.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

为了增加单片可进化硬件系统的灵活性,我们探索了在片上处理器上用软件实现进化算法的系统的可能性。与直接在硬件上实现进化算法相比,这提供了更高的灵活性,因为算法的参数和行为可以很容易地改变,并且复杂的运算符更容易实现。本文采用Xilinx MicroBlaze软核处理器,在Xilinx FPGA上实现了该系统。提出了一种适合图像识别的硬件架构,并将其应用于人脸识别任务。为了减少进化算法的搜索空间,采用了数据总线和更高级的函数。在物理设备上进行了实验,软件与数字逻辑中的适应度计算并行运行。结果表明,MicroBlaze系统的发展速度是Pentium M系统的一半,运行频率是FPGA时钟频率的17倍。将某张人脸与其他人脸区分开来的准确率为94.9%。此外,通过在训练集中引入变化,探索了随时间进化适应的可能性。该系统显示出适应这些变化的能力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-Chip Evolution Using a Soft Processor Core Applied to Image Recognition
To increase the flexibility of single-chip evolvable hardware systems, we explore possibilities of systems with the evolutionary algorithm implemented in software on an on-chip processor. This gives higher flexibility compared to implementing an evolutionary algorithm directly in hardware, since the parameters and behaviour of the algorithm can easily be changed, and complex operators are more feasible to implement. In this paper a Xilinx MicroBlaze soft core processor is used, and the system is implemented in a Xilinx FPGA. A suitable hardware architecture for image recognition has been proposed, and it is applied to a face recognition task. Data buses and higher level functions have been utilized in order to reduce the search space for the evolutionary algorithm. Experiments have been performed on the physical device, with software running in parallel with fitness computation in digital logic. Results show that the MicroBlaze system evolves at half the speed of a Pentium M system running at 17 times the FPGA clock frequency. The distinction of a certain face from others is performed at 94.9% accuracy. In addition, the possibilities for evolutionary adaptation over time are explored by introducing changes in the training set. The system shows ability to adapt to these changes
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信