平移工作空间中并联机器人关节速度极值的有效计算

J. Merlet
{"title":"平移工作空间中并联机器人关节速度极值的有效计算","authors":"J. Merlet","doi":"10.1109/ROBOT.1998.680605","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient algorithm for computing, with a guaranteed error, the maximal and minimal articular velocities of a parallel manipulator so that whatever is the location of the end-effector in a given volume it may perform a motion at a given Cartesian/angular velocity, under the assumption that its orientation is kept constant over the volume. This algorithm is much more faster and safe than the classical discretisation method.","PeriodicalId":272503,"journal":{"name":"Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient computation of the extremum of the articular velocities of a parallel manipulator in a translation workspace\",\"authors\":\"J. Merlet\",\"doi\":\"10.1109/ROBOT.1998.680605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient algorithm for computing, with a guaranteed error, the maximal and minimal articular velocities of a parallel manipulator so that whatever is the location of the end-effector in a given volume it may perform a motion at a given Cartesian/angular velocity, under the assumption that its orientation is kept constant over the volume. This algorithm is much more faster and safe than the classical discretisation method.\",\"PeriodicalId\":272503,\"journal\":{\"name\":\"Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1998.680605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1998.680605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种计算并联机械臂最大和最小关节速度的有效算法,在保证误差的情况下,使末端执行器在给定体积中的位置无论如何都能以给定的笛卡尔/角速度进行运动,假设其方向在体积上保持恒定。与传统的离散化方法相比,该算法的速度更快,安全性更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient computation of the extremum of the articular velocities of a parallel manipulator in a translation workspace
This paper presents an efficient algorithm for computing, with a guaranteed error, the maximal and minimal articular velocities of a parallel manipulator so that whatever is the location of the end-effector in a given volume it may perform a motion at a given Cartesian/angular velocity, under the assumption that its orientation is kept constant over the volume. This algorithm is much more faster and safe than the classical discretisation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信