{"title":"用声子色散分析模型计算体硅中电子漂移速度和迁移率","authors":"M. L. Gada, D. Vasileska, S. Goodnick, K. Raleva","doi":"10.1109/IWCE.2012.6242831","DOIUrl":null,"url":null,"abstract":"We present simulation results for the drift velocity and mobility in silicon at various temperatures using analytical model which incorporates analytical expressions for the acoustic and optical phonon dispersions. Our simulation results for the field-dependent average drift velocity and mobility are in excellent agreement with the results that utilize the rejection technique and the experimental data for silicon for [100] crystallographic direction at different temperatures.","PeriodicalId":375453,"journal":{"name":"2012 15th International Workshop on Computational Electronics","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron drift velocity and mobility calculation in bulk Si using an analytical model for the phonon dispersion\",\"authors\":\"M. L. Gada, D. Vasileska, S. Goodnick, K. Raleva\",\"doi\":\"10.1109/IWCE.2012.6242831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present simulation results for the drift velocity and mobility in silicon at various temperatures using analytical model which incorporates analytical expressions for the acoustic and optical phonon dispersions. Our simulation results for the field-dependent average drift velocity and mobility are in excellent agreement with the results that utilize the rejection technique and the experimental data for silicon for [100] crystallographic direction at different temperatures.\",\"PeriodicalId\":375453,\"journal\":{\"name\":\"2012 15th International Workshop on Computational Electronics\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 15th International Workshop on Computational Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2012.6242831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 15th International Workshop on Computational Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2012.6242831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electron drift velocity and mobility calculation in bulk Si using an analytical model for the phonon dispersion
We present simulation results for the drift velocity and mobility in silicon at various temperatures using analytical model which incorporates analytical expressions for the acoustic and optical phonon dispersions. Our simulation results for the field-dependent average drift velocity and mobility are in excellent agreement with the results that utilize the rejection technique and the experimental data for silicon for [100] crystallographic direction at different temperatures.