{"title":"纳米硅场效应晶体管等离子体太赫兹探测器性能增强的物理建模与分析","authors":"M. Ryu, Jeong Seop Lee, Kyung Rok Kim","doi":"10.1109/NANO.2014.6968154","DOIUrl":null,"url":null,"abstract":"In principle, the photoresponse can be enhanced by scaling down the gate oxide thickness (tox), which is a key structural parameter for the channel 2DEG density modulation. By using our TCAD simulation framework, we found that the enhanced photoresponse by reducing tox has been originated from the increase of 2DEG density modulation by the improved subthreshold swing (SSW) of FET and the decrease of 2DEG propagation length (i.e. more asymmetric 2DEG) by degradation of the normal field-dependent channel mobility.","PeriodicalId":367660,"journal":{"name":"14th IEEE International Conference on Nanotechnology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Physical modeling and analysis for performance enhancement of nanoscale silicon field-effect transistor-based plasmonic terahertz detector\",\"authors\":\"M. Ryu, Jeong Seop Lee, Kyung Rok Kim\",\"doi\":\"10.1109/NANO.2014.6968154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In principle, the photoresponse can be enhanced by scaling down the gate oxide thickness (tox), which is a key structural parameter for the channel 2DEG density modulation. By using our TCAD simulation framework, we found that the enhanced photoresponse by reducing tox has been originated from the increase of 2DEG density modulation by the improved subthreshold swing (SSW) of FET and the decrease of 2DEG propagation length (i.e. more asymmetric 2DEG) by degradation of the normal field-dependent channel mobility.\",\"PeriodicalId\":367660,\"journal\":{\"name\":\"14th IEEE International Conference on Nanotechnology\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th IEEE International Conference on Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2014.6968154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2014.6968154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physical modeling and analysis for performance enhancement of nanoscale silicon field-effect transistor-based plasmonic terahertz detector
In principle, the photoresponse can be enhanced by scaling down the gate oxide thickness (tox), which is a key structural parameter for the channel 2DEG density modulation. By using our TCAD simulation framework, we found that the enhanced photoresponse by reducing tox has been originated from the increase of 2DEG density modulation by the improved subthreshold swing (SSW) of FET and the decrease of 2DEG propagation length (i.e. more asymmetric 2DEG) by degradation of the normal field-dependent channel mobility.