{"title":"具有冗余度的机械臂逆运动学的封闭解","authors":"P. Chang","doi":"10.1109/JRA.1987.1087114","DOIUrl":null,"url":null,"abstract":"A closed-form solution formula for inverse kinematics of manipulators with redundancy is derived using the Lagrangian multiplier method. The proposed method is proved to provide the exact equilibrium state for the resolved-motion method. The repeatability problem in the resolved-motion method does not exist in the proposed method. The method is demonstrated to give more accurate trajectories than the resolved-motion method.","PeriodicalId":370047,"journal":{"name":"IEEE J. Robotics Autom.","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"A closed-form solution for inverse kinematics of robot manipulators with redundancy\",\"authors\":\"P. Chang\",\"doi\":\"10.1109/JRA.1987.1087114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A closed-form solution formula for inverse kinematics of manipulators with redundancy is derived using the Lagrangian multiplier method. The proposed method is proved to provide the exact equilibrium state for the resolved-motion method. The repeatability problem in the resolved-motion method does not exist in the proposed method. The method is demonstrated to give more accurate trajectories than the resolved-motion method.\",\"PeriodicalId\":370047,\"journal\":{\"name\":\"IEEE J. Robotics Autom.\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE J. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JRA.1987.1087114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JRA.1987.1087114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A closed-form solution for inverse kinematics of robot manipulators with redundancy
A closed-form solution formula for inverse kinematics of manipulators with redundancy is derived using the Lagrangian multiplier method. The proposed method is proved to provide the exact equilibrium state for the resolved-motion method. The repeatability problem in the resolved-motion method does not exist in the proposed method. The method is demonstrated to give more accurate trajectories than the resolved-motion method.