多智能体强化学习综述:协调问题

Young-Cheol Choi, H. Ahn
{"title":"多智能体强化学习综述:协调问题","authors":"Young-Cheol Choi, H. Ahn","doi":"10.1109/MESA.2010.5552089","DOIUrl":null,"url":null,"abstract":"Learning in multiagent system needs to solve the complexity of the task, so multiagent reinforcement learning has been focused on theoretical research and various applications. In multiagent reinforcement learning, agents can be compete or cooperate to accomplish the goal. For cooperative multiagent reinforcement learning(CMRL), agents have to coordinate with other agents. Therefore, coordination problems in CMRL are getting more and more important because of increasing the number of agents and actions. There are several algorithms dealt with cooperative multiagent reinforcement learning using stochastic games, coordinated graph, and so on. These algorithms have some assumptions to coordinate each other, however assumptions are not consistent with characteristics of the multiagent system. In this paper, we provide a survey on coordination problems in cooperative multiagent reinforcement learning, and propose new approach to solve coordination problems.","PeriodicalId":406358,"journal":{"name":"Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"A survey on multi-agent reinforcement learning: Coordination problems\",\"authors\":\"Young-Cheol Choi, H. Ahn\",\"doi\":\"10.1109/MESA.2010.5552089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning in multiagent system needs to solve the complexity of the task, so multiagent reinforcement learning has been focused on theoretical research and various applications. In multiagent reinforcement learning, agents can be compete or cooperate to accomplish the goal. For cooperative multiagent reinforcement learning(CMRL), agents have to coordinate with other agents. Therefore, coordination problems in CMRL are getting more and more important because of increasing the number of agents and actions. There are several algorithms dealt with cooperative multiagent reinforcement learning using stochastic games, coordinated graph, and so on. These algorithms have some assumptions to coordinate each other, however assumptions are not consistent with characteristics of the multiagent system. In this paper, we provide a survey on coordination problems in cooperative multiagent reinforcement learning, and propose new approach to solve coordination problems.\",\"PeriodicalId\":406358,\"journal\":{\"name\":\"Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MESA.2010.5552089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MESA.2010.5552089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

多智能体系统中的学习需要解决任务的复杂性,因此多智能体强化学习一直是理论研究和各种应用的重点。在多智能体强化学习中,智能体可以通过竞争或合作来完成目标。在协作式多智能体强化学习(CMRL)中,智能体之间必须相互协调。因此,随着agent和动作数量的增加,CMRL中的协调问题变得越来越重要。有几种算法处理合作多智能体强化学习使用随机博弈,协调图,等等。这些算法都有一些相互协调的假设,但这些假设都不符合多智能体系统的特点。本文综述了协作式多智能体强化学习中的协调问题,并提出了解决协调问题的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A survey on multi-agent reinforcement learning: Coordination problems
Learning in multiagent system needs to solve the complexity of the task, so multiagent reinforcement learning has been focused on theoretical research and various applications. In multiagent reinforcement learning, agents can be compete or cooperate to accomplish the goal. For cooperative multiagent reinforcement learning(CMRL), agents have to coordinate with other agents. Therefore, coordination problems in CMRL are getting more and more important because of increasing the number of agents and actions. There are several algorithms dealt with cooperative multiagent reinforcement learning using stochastic games, coordinated graph, and so on. These algorithms have some assumptions to coordinate each other, however assumptions are not consistent with characteristics of the multiagent system. In this paper, we provide a survey on coordination problems in cooperative multiagent reinforcement learning, and propose new approach to solve coordination problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信