{"title":"内置抖动测量电路中的自动校准技术","authors":"Chih-Ping Cheng, Jen-Chieh Liu, Kuo-Hsing Cheng","doi":"10.1109/DDECS.2012.6219066","DOIUrl":null,"url":null,"abstract":"This paper presents a built-in jitter measurement (BIJM) circuit with auto-calibration techniques for 1 GHz clock signal measurement. To measure the cycle-to-cycle jitter, a self-referenced circuit, without an external reference clock, is applied. A multi-phase oscillator (MPO) and a timing amplifier (TA) are used to enhance the timing resolution and to generate the high-speed multi-phase outputs for a multi-phase sampler (MPS). In order to against the process variation, the calibration circuits are applied to calibrate the MPO timing resolution and the TA gain. They are rewarded with a reduction of the variation of the MPO timing resolution by 65% and a reduction of the variation of the TA gain by 61.2% under the process variation, respectively.","PeriodicalId":131623,"journal":{"name":"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Auto-calibration techniques in built-in jitter measurement circuit\",\"authors\":\"Chih-Ping Cheng, Jen-Chieh Liu, Kuo-Hsing Cheng\",\"doi\":\"10.1109/DDECS.2012.6219066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a built-in jitter measurement (BIJM) circuit with auto-calibration techniques for 1 GHz clock signal measurement. To measure the cycle-to-cycle jitter, a self-referenced circuit, without an external reference clock, is applied. A multi-phase oscillator (MPO) and a timing amplifier (TA) are used to enhance the timing resolution and to generate the high-speed multi-phase outputs for a multi-phase sampler (MPS). In order to against the process variation, the calibration circuits are applied to calibrate the MPO timing resolution and the TA gain. They are rewarded with a reduction of the variation of the MPO timing resolution by 65% and a reduction of the variation of the TA gain by 61.2% under the process variation, respectively.\",\"PeriodicalId\":131623,\"journal\":{\"name\":\"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDECS.2012.6219066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2012.6219066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Auto-calibration techniques in built-in jitter measurement circuit
This paper presents a built-in jitter measurement (BIJM) circuit with auto-calibration techniques for 1 GHz clock signal measurement. To measure the cycle-to-cycle jitter, a self-referenced circuit, without an external reference clock, is applied. A multi-phase oscillator (MPO) and a timing amplifier (TA) are used to enhance the timing resolution and to generate the high-speed multi-phase outputs for a multi-phase sampler (MPS). In order to against the process variation, the calibration circuits are applied to calibrate the MPO timing resolution and the TA gain. They are rewarded with a reduction of the variation of the MPO timing resolution by 65% and a reduction of the variation of the TA gain by 61.2% under the process variation, respectively.