基于视频的内窥镜三维运动跟踪密集特征对应

Ying Wan, Qiang Wu, Xiangjian He
{"title":"基于视频的内窥镜三维运动跟踪密集特征对应","authors":"Ying Wan, Qiang Wu, Xiangjian He","doi":"10.1109/BHI.2014.6864301","DOIUrl":null,"url":null,"abstract":"This paper presents an improved video-based endoscope tracking approach on the basis of dense feature correspondence. Currently video-based methods often fail to track the endoscope motion due to low-quality endoscopic video images. To address such failure, we use image texture information to boost the tracking performance. A local image descriptor - DAISY is introduced to efficiently detect dense texture or feature information from endoscopic images. After these dense feature correspondence, we compute relative motion parameters between the previous and current endoscopic images in terms of epipolar geometric analysis. By initializing with the relative motion information, we perform 2-D/3-D or video-volume registration and determine the current endoscope pose information with six degrees of freedom (6DoF) position and orientation parameters. We evaluate our method on clinical datasets. Experimental results demonstrate that our proposed method outperforms state-of-the-art approaches. The tracking error was significantly reduced from 7.77 mm to 4.78 mm.","PeriodicalId":177948,"journal":{"name":"IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dense feature correspondence for video-based endoscope three-dimensional motion tracking\",\"authors\":\"Ying Wan, Qiang Wu, Xiangjian He\",\"doi\":\"10.1109/BHI.2014.6864301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an improved video-based endoscope tracking approach on the basis of dense feature correspondence. Currently video-based methods often fail to track the endoscope motion due to low-quality endoscopic video images. To address such failure, we use image texture information to boost the tracking performance. A local image descriptor - DAISY is introduced to efficiently detect dense texture or feature information from endoscopic images. After these dense feature correspondence, we compute relative motion parameters between the previous and current endoscopic images in terms of epipolar geometric analysis. By initializing with the relative motion information, we perform 2-D/3-D or video-volume registration and determine the current endoscope pose information with six degrees of freedom (6DoF) position and orientation parameters. We evaluate our method on clinical datasets. Experimental results demonstrate that our proposed method outperforms state-of-the-art approaches. The tracking error was significantly reduced from 7.77 mm to 4.78 mm.\",\"PeriodicalId\":177948,\"journal\":{\"name\":\"IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BHI.2014.6864301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI.2014.6864301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于密集特征对应的改进视频内窥镜跟踪方法。由于内窥镜视频图像质量低,目前基于视频的方法往往无法跟踪内窥镜的运动。为了解决这一问题,我们使用图像纹理信息来提高跟踪性能。引入局部图像描述符DAISY,有效地检测内窥镜图像中的密集纹理或特征信息。在这些密集的特征对应之后,我们根据极极几何分析计算了以前和当前内窥镜图像之间的相对运动参数。通过初始化相对运动信息,我们进行二维/三维或视频量配准,并确定当前内窥镜的姿态信息与六自由度(6DoF)的位置和方向参数。我们在临床数据集上评估我们的方法。实验结果表明,我们提出的方法优于最先进的方法。跟踪误差由7.77 mm显著减小到4.78 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dense feature correspondence for video-based endoscope three-dimensional motion tracking
This paper presents an improved video-based endoscope tracking approach on the basis of dense feature correspondence. Currently video-based methods often fail to track the endoscope motion due to low-quality endoscopic video images. To address such failure, we use image texture information to boost the tracking performance. A local image descriptor - DAISY is introduced to efficiently detect dense texture or feature information from endoscopic images. After these dense feature correspondence, we compute relative motion parameters between the previous and current endoscopic images in terms of epipolar geometric analysis. By initializing with the relative motion information, we perform 2-D/3-D or video-volume registration and determine the current endoscope pose information with six degrees of freedom (6DoF) position and orientation parameters. We evaluate our method on clinical datasets. Experimental results demonstrate that our proposed method outperforms state-of-the-art approaches. The tracking error was significantly reduced from 7.77 mm to 4.78 mm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信