基于小波去噪的信号盲检测方法

Yue Guo, Bin Wang
{"title":"基于小波去噪的信号盲检测方法","authors":"Yue Guo, Bin Wang","doi":"10.1109/ITNEC48623.2020.9084728","DOIUrl":null,"url":null,"abstract":"In this paper, a blind detection method is proposed based on wavelet denoising for short burst signals under low SNR (Signal-to-Noise Ratio), and a definite method to determine the decision threshold is given. The method first performs wavelet denoising on the received data, and then uses the energy detector based on a short window to detect the existence of the signal. Simulation results show that for 2FSK, MSK, QPSK and 16QAM signals, when SNR is −12dB, the detection probability can be higher than 85% and false alarm probability is basically maintained below 20%.","PeriodicalId":235524,"journal":{"name":"2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Signal Blind Detection Method Based on Wavelet Denoising\",\"authors\":\"Yue Guo, Bin Wang\",\"doi\":\"10.1109/ITNEC48623.2020.9084728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a blind detection method is proposed based on wavelet denoising for short burst signals under low SNR (Signal-to-Noise Ratio), and a definite method to determine the decision threshold is given. The method first performs wavelet denoising on the received data, and then uses the energy detector based on a short window to detect the existence of the signal. Simulation results show that for 2FSK, MSK, QPSK and 16QAM signals, when SNR is −12dB, the detection probability can be higher than 85% and false alarm probability is basically maintained below 20%.\",\"PeriodicalId\":235524,\"journal\":{\"name\":\"2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNEC48623.2020.9084728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNEC48623.2020.9084728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于小波去噪的低信噪比短突发信号盲检测方法,并给出了判定阈值的确定方法。该方法首先对接收到的数据进行小波去噪,然后利用基于短窗口的能量检测器检测信号是否存在。仿真结果表明,对于2FSK、MSK、QPSK和16QAM信号,当信噪比为- 12dB时,检测概率可高于85%,虚警概率基本保持在20%以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Signal Blind Detection Method Based on Wavelet Denoising
In this paper, a blind detection method is proposed based on wavelet denoising for short burst signals under low SNR (Signal-to-Noise Ratio), and a definite method to determine the decision threshold is given. The method first performs wavelet denoising on the received data, and then uses the energy detector based on a short window to detect the existence of the signal. Simulation results show that for 2FSK, MSK, QPSK and 16QAM signals, when SNR is −12dB, the detection probability can be higher than 85% and false alarm probability is basically maintained below 20%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信