fpga中使用部分重构的粗粒度TMR设计状态恢复

Markus Schütz, A. Steininger, F. Huemer, J. Lechner
{"title":"fpga中使用部分重构的粗粒度TMR设计状态恢复","authors":"Markus Schütz, A. Steininger, F. Huemer, J. Lechner","doi":"10.1109/DFT.2018.8602984","DOIUrl":null,"url":null,"abstract":"The operation of field-programmable gate arrays (FPGAs) in harsh environments like space entails the need for suitable fault-tolerance techniques of which Triple-Modular Redundancy (TMR) is most commonly deployed. While TMR is undoubtedly effective in masking faults, state recovery remains a problematic issue: Fine-grain TMR allows safe recovery, but incurs prohibitive area and performance penalties. In contrast, coarse-grain TMR has little overhead, but cannot safely provide recovery without roll-back or reset. We use the dynamic reconfiguration feature of modern FPGAs to augment an initially coarse-grain TMR with the ability of temporarily loading a fine-grain TMR design for forward-state-recovery. Therefore, we can seamlessly resume correct (fully redundant) operation in case of data-as well as configuration faults that occurred in the FPGA. As a proof of concept, the paper presents a showcase design and discusses distinctive properties of this new approach.","PeriodicalId":297244,"journal":{"name":"2018 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"State Recovery for Coarse-Grain TMR Designs in FPGAs Using Partial Reconfiguration\",\"authors\":\"Markus Schütz, A. Steininger, F. Huemer, J. Lechner\",\"doi\":\"10.1109/DFT.2018.8602984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The operation of field-programmable gate arrays (FPGAs) in harsh environments like space entails the need for suitable fault-tolerance techniques of which Triple-Modular Redundancy (TMR) is most commonly deployed. While TMR is undoubtedly effective in masking faults, state recovery remains a problematic issue: Fine-grain TMR allows safe recovery, but incurs prohibitive area and performance penalties. In contrast, coarse-grain TMR has little overhead, but cannot safely provide recovery without roll-back or reset. We use the dynamic reconfiguration feature of modern FPGAs to augment an initially coarse-grain TMR with the ability of temporarily loading a fine-grain TMR design for forward-state-recovery. Therefore, we can seamlessly resume correct (fully redundant) operation in case of data-as well as configuration faults that occurred in the FPGA. As a proof of concept, the paper presents a showcase design and discusses distinctive properties of this new approach.\",\"PeriodicalId\":297244,\"journal\":{\"name\":\"2018 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT.2018.8602984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT.2018.8602984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现场可编程门阵列(fpga)在太空等恶劣环境中的运行需要合适的容错技术,其中最常用的是三模冗余(TMR)。虽然TMR在掩盖故障方面无疑是有效的,但状态恢复仍然是一个有问题的问题:细粒度TMR允许安全恢复,但会带来令人望而望而难的面积和性能损失。相比之下,粗粒度TMR开销很小,但不能在没有回滚或重置的情况下安全地提供恢复。我们使用现代fpga的动态重构特征来增强初始粗粒度TMR,并具有临时加载细粒度TMR设计以进行前向状态恢复的能力。因此,在FPGA中发生数据和配置错误的情况下,我们可以无缝地恢复正确(完全冗余)操作。作为概念验证,本文提出了一个展示设计,并讨论了这种新方法的独特特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State Recovery for Coarse-Grain TMR Designs in FPGAs Using Partial Reconfiguration
The operation of field-programmable gate arrays (FPGAs) in harsh environments like space entails the need for suitable fault-tolerance techniques of which Triple-Modular Redundancy (TMR) is most commonly deployed. While TMR is undoubtedly effective in masking faults, state recovery remains a problematic issue: Fine-grain TMR allows safe recovery, but incurs prohibitive area and performance penalties. In contrast, coarse-grain TMR has little overhead, but cannot safely provide recovery without roll-back or reset. We use the dynamic reconfiguration feature of modern FPGAs to augment an initially coarse-grain TMR with the ability of temporarily loading a fine-grain TMR design for forward-state-recovery. Therefore, we can seamlessly resume correct (fully redundant) operation in case of data-as well as configuration faults that occurred in the FPGA. As a proof of concept, the paper presents a showcase design and discusses distinctive properties of this new approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信