{"title":"NoC开关设计中的控制和数据路径解耦:面积、功率和性能影响","authors":"S. Medardoni, D. Bertozzi, L. Benini, E. Macii","doi":"10.1109/ISSOC.2007.4427438","DOIUrl":null,"url":null,"abstract":"Networks on chip are emerging as a disruptive technology to tackle the problem of scalable on-chip communication. An intensive research effort is being devoted to customizing generic network building blocks for specific design objectives such as low-latency or low-power. In this work, we identify in control and datapath decoupling inside a switch architecture an effective means of achieving the needed flexibility, while taking into account the switching, buffering and flow control implications of each design point. We deploy a 65 nm low-power technology library to explore the performance-power trade-off in the design of a NoC switch with area awareness, while leveraging placement-aware logic synthesis tools to deal with the predictability challenges posed by nanoscale designs.","PeriodicalId":244119,"journal":{"name":"2007 International Symposium on System-on-Chip","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Control and datapath decoupling in the design of a NoC switch: area, power and performance implications\",\"authors\":\"S. Medardoni, D. Bertozzi, L. Benini, E. Macii\",\"doi\":\"10.1109/ISSOC.2007.4427438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Networks on chip are emerging as a disruptive technology to tackle the problem of scalable on-chip communication. An intensive research effort is being devoted to customizing generic network building blocks for specific design objectives such as low-latency or low-power. In this work, we identify in control and datapath decoupling inside a switch architecture an effective means of achieving the needed flexibility, while taking into account the switching, buffering and flow control implications of each design point. We deploy a 65 nm low-power technology library to explore the performance-power trade-off in the design of a NoC switch with area awareness, while leveraging placement-aware logic synthesis tools to deal with the predictability challenges posed by nanoscale designs.\",\"PeriodicalId\":244119,\"journal\":{\"name\":\"2007 International Symposium on System-on-Chip\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Symposium on System-on-Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSOC.2007.4427438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on System-on-Chip","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSOC.2007.4427438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control and datapath decoupling in the design of a NoC switch: area, power and performance implications
Networks on chip are emerging as a disruptive technology to tackle the problem of scalable on-chip communication. An intensive research effort is being devoted to customizing generic network building blocks for specific design objectives such as low-latency or low-power. In this work, we identify in control and datapath decoupling inside a switch architecture an effective means of achieving the needed flexibility, while taking into account the switching, buffering and flow control implications of each design point. We deploy a 65 nm low-power technology library to explore the performance-power trade-off in the design of a NoC switch with area awareness, while leveraging placement-aware logic synthesis tools to deal with the predictability challenges posed by nanoscale designs.