面向出版网络探索的局部内聚最大化算法

Matthias Held, Bastian Steudel, J. Gläser
{"title":"面向出版网络探索的局部内聚最大化算法","authors":"Matthias Held, Bastian Steudel, J. Gläser","doi":"10.55835/644122df83bc0caad0e3333d","DOIUrl":null,"url":null,"abstract":"The dominant approach to the reconstruction of scientific topics is the application of global community detection algorithms. Some of the properties of these algorithms, however, collide with the sociological discussion on topics. We present here for consideration a new local bibliometric algorithm that is in line with sociological definitions of topics and which reconstructs dense regions in bibliometric networks locally.","PeriodicalId":334841,"journal":{"name":"27th International Conference on Science, Technology and Innovation Indicators (STI 2023)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A local cohesion-maximising algorithm for the exploration of publication networks\",\"authors\":\"Matthias Held, Bastian Steudel, J. Gläser\",\"doi\":\"10.55835/644122df83bc0caad0e3333d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dominant approach to the reconstruction of scientific topics is the application of global community detection algorithms. Some of the properties of these algorithms, however, collide with the sociological discussion on topics. We present here for consideration a new local bibliometric algorithm that is in line with sociological definitions of topics and which reconstructs dense regions in bibliometric networks locally.\",\"PeriodicalId\":334841,\"journal\":{\"name\":\"27th International Conference on Science, Technology and Innovation Indicators (STI 2023)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"27th International Conference on Science, Technology and Innovation Indicators (STI 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55835/644122df83bc0caad0e3333d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"27th International Conference on Science, Technology and Innovation Indicators (STI 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55835/644122df83bc0caad0e3333d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

科学主题重建的主要方法是应用全局社区检测算法。然而,这些算法的一些特性与社会学对主题的讨论发生了冲突。我们在此提出了一种新的局部文献计量算法,该算法符合主题的社会学定义,并在局部重建文献计量网络中的密集区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A local cohesion-maximising algorithm for the exploration of publication networks
The dominant approach to the reconstruction of scientific topics is the application of global community detection algorithms. Some of the properties of these algorithms, however, collide with the sociological discussion on topics. We present here for consideration a new local bibliometric algorithm that is in line with sociological definitions of topics and which reconstructs dense regions in bibliometric networks locally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信