{"title":"核脊回归法在语音识别中的应用:一种新方法","authors":"H. Trang, L. Tran","doi":"10.1109/ATC.2014.7043378","DOIUrl":null,"url":null,"abstract":"Speech recognition is the important problem in pattern recognition research field. In this paper, the kernel ridge regression method is proposed to be applied to the MFCC feature vectors of the speech dataset available from IC Design lab at Faculty of Electricals-Electronics Engineering, University of Technology, Ho Chi Minh City. Experiment results show that the kernel ridge regression method outperforms the current state of the art Hidden Markov Model method in speech recognition problem in terms of sensitivity performance measure and calculation speed of training process.","PeriodicalId":333572,"journal":{"name":"2014 International Conference on Advanced Technologies for Communications (ATC 2014)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Kernel ridge regression method applied to speech recognition problem: A novel approach\",\"authors\":\"H. Trang, L. Tran\",\"doi\":\"10.1109/ATC.2014.7043378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech recognition is the important problem in pattern recognition research field. In this paper, the kernel ridge regression method is proposed to be applied to the MFCC feature vectors of the speech dataset available from IC Design lab at Faculty of Electricals-Electronics Engineering, University of Technology, Ho Chi Minh City. Experiment results show that the kernel ridge regression method outperforms the current state of the art Hidden Markov Model method in speech recognition problem in terms of sensitivity performance measure and calculation speed of training process.\",\"PeriodicalId\":333572,\"journal\":{\"name\":\"2014 International Conference on Advanced Technologies for Communications (ATC 2014)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Advanced Technologies for Communications (ATC 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATC.2014.7043378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advanced Technologies for Communications (ATC 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATC.2014.7043378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kernel ridge regression method applied to speech recognition problem: A novel approach
Speech recognition is the important problem in pattern recognition research field. In this paper, the kernel ridge regression method is proposed to be applied to the MFCC feature vectors of the speech dataset available from IC Design lab at Faculty of Electricals-Electronics Engineering, University of Technology, Ho Chi Minh City. Experiment results show that the kernel ridge regression method outperforms the current state of the art Hidden Markov Model method in speech recognition problem in terms of sensitivity performance measure and calculation speed of training process.