基于参数优化自抗扰控制器的多无人机编队控制

Yuxin Hu, Changlin Liu, Ping Wang, Mengping Zhang, Han Mu, Quan Yuan
{"title":"基于参数优化自抗扰控制器的多无人机编队控制","authors":"Yuxin Hu, Changlin Liu, Ping Wang, Mengping Zhang, Han Mu, Quan Yuan","doi":"10.1109/ccis57298.2022.10016414","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of multiple unmanned aerial vehicles (UAVs) formation in a wind disturbance environment. An anti-disturbance formation control method is proposed to prevent environmental disturbance while ensuring the formation. By introducing the active disturbance rejection control (ADRC) of each UAV in the consensus-based algorithm structure, the stability of the formation system can be significantly improved. Moreover, particle swarm optimization (PSO) is used to optimize the connection weight between ADRC and consensus control, to ensure that the advantages of the two control theories are better combined, so that the controlled system has stronger robustness and better dynamic quality. Finally, a simulation example is provided to verify the effectiveness of the control method.","PeriodicalId":374660,"journal":{"name":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-UAV Formation Control Based on Parameter Optimization ADRC\",\"authors\":\"Yuxin Hu, Changlin Liu, Ping Wang, Mengping Zhang, Han Mu, Quan Yuan\",\"doi\":\"10.1109/ccis57298.2022.10016414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of multiple unmanned aerial vehicles (UAVs) formation in a wind disturbance environment. An anti-disturbance formation control method is proposed to prevent environmental disturbance while ensuring the formation. By introducing the active disturbance rejection control (ADRC) of each UAV in the consensus-based algorithm structure, the stability of the formation system can be significantly improved. Moreover, particle swarm optimization (PSO) is used to optimize the connection weight between ADRC and consensus control, to ensure that the advantages of the two control theories are better combined, so that the controlled system has stronger robustness and better dynamic quality. Finally, a simulation example is provided to verify the effectiveness of the control method.\",\"PeriodicalId\":374660,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ccis57298.2022.10016414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ccis57298.2022.10016414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了多架无人机在风扰动环境下的编队问题。在保证地层安全的同时,提出了一种抗扰动地层控制方法。在基于共识的算法结构中引入每架无人机的自抗扰控制(ADRC),可以显著提高编队系统的稳定性。利用粒子群算法优化自抗扰控制与共识控制之间的连接权,使两种控制理论的优点得到更好的结合,使被控系统具有更强的鲁棒性和更好的动态质量。最后,通过仿真实例验证了该控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-UAV Formation Control Based on Parameter Optimization ADRC
This paper considers the problem of multiple unmanned aerial vehicles (UAVs) formation in a wind disturbance environment. An anti-disturbance formation control method is proposed to prevent environmental disturbance while ensuring the formation. By introducing the active disturbance rejection control (ADRC) of each UAV in the consensus-based algorithm structure, the stability of the formation system can be significantly improved. Moreover, particle swarm optimization (PSO) is used to optimize the connection weight between ADRC and consensus control, to ensure that the advantages of the two control theories are better combined, so that the controlled system has stronger robustness and better dynamic quality. Finally, a simulation example is provided to verify the effectiveness of the control method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信