{"title":"立方体卫星任务中锂离子电池模型参数的演变","authors":"A. Pražanová, V. Knap","doi":"10.1109/ISSE54558.2022.9812774","DOIUrl":null,"url":null,"abstract":"The popularity of CubeSats has grown in the last few years. CubeSats are small-sized, low-weight satellites commonly used in low Earth orbit for remote sensing or communications. Their most considerable benefits are their high flexibility, quick lead time, and significantly lower price than ‘classical’ satellites, due to their vast use of commercial off-the-shelf components. Lithium-ion batteries are being used as energy storage within these components. Batteries are necessary for the spacecraft; they supply energy when there is not enough generation from solar panels, especially during eclipses. The batteries undertake a series of operations during missions in various conditions that influence their lifetime and performance. The performance of these batteries can be modelled via an electrical-circuit model. Thus, a set of characterization and degradation tests considering cycling aging were performed to identify the cell behaviour throughout an expected battery life in a CubeSat. The aging trends of the battery model parameters based on the provided parametrization procedure were observed and evaluated. Moreover, the developed model reaches high accuracy for a mission profile with the root-mean-square-error below 9 mV.","PeriodicalId":413385,"journal":{"name":"2022 45th International Spring Seminar on Electronics Technology (ISSE)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evolution of Lithium-Ion Battery Model Parameters for CubeSats Missions\",\"authors\":\"A. Pražanová, V. Knap\",\"doi\":\"10.1109/ISSE54558.2022.9812774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The popularity of CubeSats has grown in the last few years. CubeSats are small-sized, low-weight satellites commonly used in low Earth orbit for remote sensing or communications. Their most considerable benefits are their high flexibility, quick lead time, and significantly lower price than ‘classical’ satellites, due to their vast use of commercial off-the-shelf components. Lithium-ion batteries are being used as energy storage within these components. Batteries are necessary for the spacecraft; they supply energy when there is not enough generation from solar panels, especially during eclipses. The batteries undertake a series of operations during missions in various conditions that influence their lifetime and performance. The performance of these batteries can be modelled via an electrical-circuit model. Thus, a set of characterization and degradation tests considering cycling aging were performed to identify the cell behaviour throughout an expected battery life in a CubeSat. The aging trends of the battery model parameters based on the provided parametrization procedure were observed and evaluated. Moreover, the developed model reaches high accuracy for a mission profile with the root-mean-square-error below 9 mV.\",\"PeriodicalId\":413385,\"journal\":{\"name\":\"2022 45th International Spring Seminar on Electronics Technology (ISSE)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 45th International Spring Seminar on Electronics Technology (ISSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSE54558.2022.9812774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 45th International Spring Seminar on Electronics Technology (ISSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSE54558.2022.9812774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolution of Lithium-Ion Battery Model Parameters for CubeSats Missions
The popularity of CubeSats has grown in the last few years. CubeSats are small-sized, low-weight satellites commonly used in low Earth orbit for remote sensing or communications. Their most considerable benefits are their high flexibility, quick lead time, and significantly lower price than ‘classical’ satellites, due to their vast use of commercial off-the-shelf components. Lithium-ion batteries are being used as energy storage within these components. Batteries are necessary for the spacecraft; they supply energy when there is not enough generation from solar panels, especially during eclipses. The batteries undertake a series of operations during missions in various conditions that influence their lifetime and performance. The performance of these batteries can be modelled via an electrical-circuit model. Thus, a set of characterization and degradation tests considering cycling aging were performed to identify the cell behaviour throughout an expected battery life in a CubeSat. The aging trends of the battery model parameters based on the provided parametrization procedure were observed and evaluated. Moreover, the developed model reaches high accuracy for a mission profile with the root-mean-square-error below 9 mV.