A. Orlov, P. Fay, G. Snider, X. Jehl, S. Barraud, M. Sanquer
{"title":"用双通道射频反射法检测超小型硅单孔晶体管的第一带电态","authors":"A. Orlov, P. Fay, G. Snider, X. Jehl, S. Barraud, M. Sanquer","doi":"10.1109/DRC.2014.6872308","DOIUrl":null,"url":null,"abstract":"Si CMOS single-electron transistors (SET) fabricated using fully depleted SOI [1] enable an understanding of charging mechanisms in ultimately scaled CMOS devices down to a transport through a single dopant [2]. A schematic representation of such a device is shown in Fig 1. Radio-frequency (RF) reflectometry [3] is an effective tool for charge detection in various single-electron systems. Since it does not require any DC current flow the detection of electrons passing even through a single tunnel junction [4] is possible. When a Si SET is populated with electrons, one intriguing question need to be answered: where do the first charge carriers spatially accumulate during the formation of the conducting “island”? To address this issue we use a dual channel technique that enables spatial identification of charging processes within the device. Here we present results obtained using this technique for single-hole transistors (SHT). A micrograph of a typical studied SHT device.","PeriodicalId":293780,"journal":{"name":"72nd Device Research Conference","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of the first charged states in ultrasmall Si single-hole transistor using dual-channel radio frequency reflectometry\",\"authors\":\"A. Orlov, P. Fay, G. Snider, X. Jehl, S. Barraud, M. Sanquer\",\"doi\":\"10.1109/DRC.2014.6872308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Si CMOS single-electron transistors (SET) fabricated using fully depleted SOI [1] enable an understanding of charging mechanisms in ultimately scaled CMOS devices down to a transport through a single dopant [2]. A schematic representation of such a device is shown in Fig 1. Radio-frequency (RF) reflectometry [3] is an effective tool for charge detection in various single-electron systems. Since it does not require any DC current flow the detection of electrons passing even through a single tunnel junction [4] is possible. When a Si SET is populated with electrons, one intriguing question need to be answered: where do the first charge carriers spatially accumulate during the formation of the conducting “island”? To address this issue we use a dual channel technique that enables spatial identification of charging processes within the device. Here we present results obtained using this technique for single-hole transistors (SHT). A micrograph of a typical studied SHT device.\",\"PeriodicalId\":293780,\"journal\":{\"name\":\"72nd Device Research Conference\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"72nd Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2014.6872308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"72nd Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2014.6872308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of the first charged states in ultrasmall Si single-hole transistor using dual-channel radio frequency reflectometry
Si CMOS single-electron transistors (SET) fabricated using fully depleted SOI [1] enable an understanding of charging mechanisms in ultimately scaled CMOS devices down to a transport through a single dopant [2]. A schematic representation of such a device is shown in Fig 1. Radio-frequency (RF) reflectometry [3] is an effective tool for charge detection in various single-electron systems. Since it does not require any DC current flow the detection of electrons passing even through a single tunnel junction [4] is possible. When a Si SET is populated with electrons, one intriguing question need to be answered: where do the first charge carriers spatially accumulate during the formation of the conducting “island”? To address this issue we use a dual channel technique that enables spatial identification of charging processes within the device. Here we present results obtained using this technique for single-hole transistors (SHT). A micrograph of a typical studied SHT device.